Equalizer

VizSIG Meeting, October 2006
Stefan Filemann

http:/ / www.equalizergraphics.com /documents/EqualizerVizSIG06.pdf

mailto:eilemann@gmail.com?subject=Equalizer%20VizSIG%202006%20Presentation
mailto:eilemann@gmail.com?subject=Equalizer%20VizSIG%202006%20Presentation
http://www.equalizergraphics.com/documents/EqualizerVizSIG06.pdf
http://www.equalizergraphics.com/documents/EqualizerVizSIG06.pdf

Outline

e High performance visualisation (HPV)

 Equalizer
* Programming interface
e Resource management

e Future components

HPV

 Transparent and semi-transparent
solutions

* Programming interfaces

e Scene graphs

¢ (Generic middleware

HPV Transparent Solutions

¢ Chromium, ModViz VGP, OMP

e Operate on OpenGL command stream

* Programming extensions for improved
performance and scalability (semi-
transparent)

e HPC analogy: auto-parallelising
compilers

Scene Graph API’s

ScaleViz, Vega Prime, VTK, OpenSG

Impose overall programming model
and data structure

Best for developing new applications

HPC analogy: CFD codes

Generic HPV Middleware

Cavelib, VRJuggler, MPK

[imited to HPV-critical areas of the
code

Best for porting existing applications

HPC analogy: MPI, PVM

Equalizer

A Programming Intertface
and
Resource Management System

for
Scalable Graphics Applications

Equalizer Programming Interface

Applications are written against a client library
which abstracts the interface to the execution
environment

e Minimally invasive programming approach

e Abstracts multi-processing, synchronisation
and data transport

e Supports distributed rendering and performs
frame compositing

Equalizer Programming Interface

C++ classes which correspond to graphic entities,
e.g.:

e Node - a single computer in the cluster

* Pipe — a graphics card and rendering thread

* Window — an OpenGL drawable

* Channel - a viewport within a window

Equalizer Programming Interface

Application subclasses and overrides methods,
o

Channel::draw — render using the provided frustum,
viewport and range

Window::init — init OpenGL drawable and state
Pipe::startFrame — update frame-specific data
Node::init — initialise per node application data

Default methods implement typical use case

Resource Management System

Applications are deployed by a server which
balances the resource usage across the system

Centralises the setup for all applications

Configures application and deploys render
clients

Dynamic load-balancing of the cluster
resources

Resource Management System

Server configuration:

server

{

config // 1-n times, currently only the first one is used by the server

{

<resources> // What is being used (next slide)
<compounds> // How it is being used (slide after next)

Resource Management System

Resource configuration:

node // 1l-n times
{
pipe // 1-n times
{
display unsigned // X11 display or ignored
screen unsigned // X11 screen/CGL display/graphics adapter
window // 1l-n times
{
viewport [viewport] // wrt pipe, default full screen
channel // 1-n times
{
name string
viewport [viewport] // wrt window, default full window

Resource Management System

Resource utilisation:

compound // 1l-n times
{
channel string // where the compound tasks are executed
task [CLEAR DRAW ASSEMBLE READBACK] // tasks to execute
viewport [viewport] // wrt parent compound, sort-first
range [float float] // DB-range for sort-last
eye [CYCLOP LEET RIGHT] // monoscopic or stereo view
wall |projection // frustum description
g // typically at root compound

<child-compounds>

swapBarrier { name string } // same barriername = sync swap buffers
outputFrame { name string }

inputFrame { name string } // name corresponding to an output frame

Decomposition Modes

e DB/sort-last (range) adl

e 2D /sort-first (viewport) el I

e Eye/stereo (eye) . _+ s
e DPlex (period, phase)

e Any combination thereof

Y

SV' !
~

>

L

&

LANANA IAANA IAAN

Recomposition Modes

 Combination of task and frames allows
virtually any recomposition mode, e.g.:

e 2D tile gathering

* binary swap

e direct send

SSI and Clusters

Supercomputers are just tightly
integrated clusters

Equalizer runs on both architectures
Execution model is the same

SSI allows additional optimisations and
simplifications

Stand-alone SSI version planned

Use Cases

Display Walls [Scalable Rendering]

D00 = ::::|:::|||||IIIIIIIIII
000 = sl

ols 2
u'@() B ga (T

a D00 = sl
u 000 ® 3::::|:::|||||IIIIIIIIII

l Virtual Reality i

Equalizer Future

e Transparent Layer: virtual OpenGL screen
e Scene Graph: “transparent scalability”

e Equalizer: Scalable rendering engine

N

HPV Applications TLegacy Applications

~\

Scene Graph W (Transparent Layer

[Equalizer J

OpenGL, Xdmx and System Libraries

Iransparent Layer

“Enabler” for visualisation clusters
Legacy and non-critical applications

System load balancing between
transparent and HPV applications

Single point of configuration

Performance and compatibility as today

Distributed Scene Graph

Uses Equalizer for HPV
Small effort for application developer
Single point of configuration

Candidates: OpenSceneGraph, Coin

Remote Visualisation

e Leverages knowledge of the application

 Frames are often available in main memory

e Additional frame-transport optimisations

e [oadbalancing of multiple applications
on one visualisation cluster

=
e

Project Status

e API and resource server are usable

 Transparent layer, remote visualisation
and distributed scene graph depend on
demand and sponsoring

[Last Words

LGPL license
Open standard for scalable graphics
User-driven development

Alpha version available on:
www.equalizergraphics.com

Consulting and support available

Get in touch

http://www.equalizergraphics.com/
http://www.equalizergraphics.com/
mailto:eile@equalizergraphics.com?subject=Equalizer
mailto:eile@equalizergraphics.com?subject=Equalizer

e T-window

® 5 pipe

e 5-channel.cave

