
OpenSceneGraph and
Equalizer

Equalizer White Paper, April 2010

Parallel Rendering for OpenSceneGraph
OSGScaleViewer is a scalable OpenSceneGraph viewer based on the Equalizer parallel rendering framework,
providing the ideal basis for building scalable high-performance 3D applications using multiple GPU’s.

Introduction

The OpenSceneGraph (OSG) is an open
source high performance 3D graphics toolkit,
used widely in the vis-sim, space, scientific,
oil-gas, games and virtual reality industries.

Equalizer is the standard middleware for
parallel rendering. It enables OpenGL
applications to benefit from multiple graphics
cards, processors and computers to scale
rendering performance, visual quality and
display size.

OSGScaleViewer is an example application
integrating OSG and Equalizer. Its purpose is
to demonstrate the optimal approach for this
integration and to serve as a basis for
developing scalable, high-performance OSG
applications.

This White Paper describes the features of
OSGScaleViewer and expands on various
implementation scenarios for more complex
real-world applications.

OSGScaleViewer

OSGScaleViewer is a scalable, cluster-ready
viewer application based on OpenSceneGraph
and Equalizer. It demonstrates how to
integrate OSG and Equalizer optimally to

exploit the power of multi-GPU systems and
visualization clusters. It supports:

• Rendering multiple views of the same
scene graph, using software or hardware
swap synchronization.

• Parallel, multithreaded rendering on multi-
GPU workstations and distributed rendering
on multi-GPU visualization clusters.

• Scalable rendering to aggregate the power
of multiple GPUs for one or multiple views
(supported modes: 2D, DPlex, 2D load-
balancing, cross-segment load-balancing)

• Any combination of the above due to the
flex ib le run-t ime configurat ion o f
Equalizer, using a simple configuration file.

Parallel Architecture

The architecture of the OSG viewer is
designed for optimal performance and
p a r a l l e l i z a t i o n , w h i l e p r o v i d i n g a
straightforward programming model to
developers.

Each process in the cluster is represented by
an eq::Node. The node instantiates one copy
of the scene graph in Node::configInit.
Animation updates and other scene graph
modifications are applied at the beginning of
each frame in Node::frameStart.

 Each GPU on a node is represented by an
eq::Pipe. Each GPU runs its own rendering
thread in parallel to the other pipes and the
node main thread.

Each on-screen and off-screen OpenGL
drawable and context is abstracted by an
eq::Window. To render the scene graph, a
customized SceneView is used. The
SceneView is initialized in eq::Window::config-
InitGL(). Only the first window of a GPU, the
shared context window, performs this
initialization, while other windows reuse the
scene view of their shared window.

All rendering operations happen in an
eq::Channel, which represents a 2D viewport
in an eq::Window. Channel::frameDraw, which
performs the actual rendering, sets up the
SceneView with the rendering parameters
provided by Equalizer and triggers a cull and
draw traversal to render a new frame.

The rendering operations of all pipe threads on
a single node are frame-synchronized, that is,
they are synchronized with each other and the
node’s main thread. Node processes and
compositing operations for scalable rendering
run asynchronous to this synchronization for
optimal performance. Figure 1 depicts a

OSGScaleViewer
delivers a scalable 3D
rendering foundation
for large-scale GPU

clusters

possible synchronization when using scalable
rendering to render one view using four GPU’s.

Data Distribution

Equalizer provides simple, yet powerful data
distribution based on the serialization of C++
objects. The objects are versioned, allowing
efficient updates based on delta serialization.
Object versions can easily be tied to rendering
frames, keeping the database consistent
across all rendering processes in a cluster.

For large clusters Equalizer provides optionally
a reliable multicast implementation which
efficiently distributes data to many cluster
nodes.

OSGScaleViewer uses distributed objects to
initialize the model filename on all processes
and to synchronize the camera data. This
usage is very similar to the eqPly polygonal
rendering example and described in depth in
the Equalizer Programming and User Guide.

OSGScaleViewer does not need to implement
a mechanism to distribute changes on the
scene graph itself. The following sections
outline different approaches which can be
taken to implement distributed OSG updates.

Scene Graph Updates

The OSG viewer is a multithreaded rendering
application, which applies all scene graph
modifications in the main thread, between
rendering frames. This is the preferred design
pattern for optimal performance and memory
usage. The default thread synchronization of
Equalizer simplifies this implementation. All
scene graph changes are done in the node
process at the beginning of a frame, before the
pipe rendering threads are unlocked, as shown
in Figure 1.

Some applications tightly integrate data
updates with the rendering traversal. In this
case, a multiprocess approach may be used.
For each GPU, a separate rendering process
using an Equalizer node, is instantiated. This
provides protection against conflicting data
updates, but increases memory requirements.

The multithreaded approach of
osgScaleViewer fully exploits
multi-GPU systems for multi-view
and scalable rendering. All data
modifications are done in a
thread-safe manner and are
directly available to the rendering threads
through shared memory.

For graphics clusters applications need to
implement a mechanism to update the different
scene graph instances on all cluster nodes. In
the following sections, two different paradigms
to synchronize the databases are outlined.

Event Distribution

The least invasive, but code intensive and
more fragile approach, is to apply the same
operations to each scene graph instance. The
initial scene graph is available to all processes,
e.g., through a shared file system.

The relevant commands to modify the scene
graph are distributed to all processes in the
cluster. The FrameData object of the
osgScaleViewer is the ideal place for this,
since it provides frame-specific data correctly
to all nodes. Each node reads and applies the
commands in Node::frame-
Start to keep the data
consistent.

Data Distribution

Data distribution for OSG
nodes is the most versatile
and robust approach. The
application process holds
the master instance of the
scene graph. Any changes
on the scene graph are
tracked internally. At the
beginning of each frame,
the application commits all
pending changes. The
render clients receive a
change list and update the
data in Node::frameStart.

Several design patterns can

be employed to
implement data
d i s t r i b u t i o n .
S u b c l a s s i n g ,
proxies or multiple
inheritance are the
most common (Figure
2) . T h e E q u a l i z e r
Programming and User Guide describes
the characteristics of the different approaches
and data distribution in detail.

Conclusion

OpenSceneGraph and Equalizer are the ideal
combination for high-performance 3D
visualization. While OSG focuses on rendering
efficiently, Equalizer provides scalability on
multi-GPU systems and large-scale clusters.
OSGScaleViewer is a template for applications
combining the two open source solutions in an

efficient way.

About

OpenSceneGraph is a product of
OpenSceneGraph Professional
S e r v i c e s . P l e a s e v i s i t
www.openscenegraph.org for
more information.

Equalizer is a product of Eyescale
Software GmbH. Please visit
w w w . e y e s c a l e . c h a n d
www.equalizergraphics.com for
more information.

OSGScaleViewer is available as
part of the Equalizer open source
d i s t r ibu t ion . The Equa l i ze r
Programming and User Guide can
be downloaded from the Equalizer
website or ordered as a hardcopy
from lulu.com.

OSGScaleViewer
A flexible and scalable foundation for developing high-
performance image generators based on leading Open Source
technologies.

Eyescale Software GmbH
Faubourg de l’Hôpital 12

2000 Neuchâtel
http://www.eyescale.ch

+41 76 33 77 247
OmniTerra (http://www.omniterra.ch), an Equalizer-based OSG application

Figure 2: Subclassing,
p rox ies and mu l t ip l e
inheritance for OSG data
distribution

eq::Objectserialize
deserialize

osg::Node

1

eq::Object

serialize
deserialize

dist::Proxy osg::Node

eq::Object

serialize
deserialize

osgDist::Node

osg::Node

SceneView
frame()

assemble

readback

SG update

Main Thread

startFrame 1

Thread
GPU 1

SceneView
frame()

Thread
GPU 2

SceneView
frame()

Thread
GPU 3

SceneView
frame()

Thread
GPU 4

init
init window

init SceneView
init FBO

init SceneView

finishFrame 1
readback

readback

...

SceneView
frame()

SceneView
frame()

SceneView
frame()SceneView

frame()

startFrame 2

assemble
readback

readbackreadback
SG update

finishFrame 2

startFrame 3

init FBO
init SceneView

init FBO
init SceneView

Figure 1:
Asynchronous
rendering tasks

when updating one
view using four

GPU’s

http://www.openscenegraph.org
http://www.openscenegraph.org
http://www.eyescale.ch
http://www.eyescale.ch
http://www.equalizergraphics.com
http://www.equalizergraphics.com
http://www.equalizergraphics.com/documentation.html
http://www.equalizergraphics.com/documentation.html
http://www.equalizergraphics.com/documentation.html
http://www.equalizergraphics.com/documentation.html
http://www.lulu.com/product/paperback/equalizer-09-programming-and-user-guide/5270805
http://www.lulu.com/product/paperback/equalizer-09-programming-and-user-guide/5270805
http://www.eyescale.ch
http://www.eyescale.ch
http://www.omniterra.ch/
http://www.omniterra.ch/

