
Eurographics Symposium on Parallel Graphics and Visualization (2007)
Jean M. Favre, Luis Paulo dos Santos, and Dirk Reiners (Editors)

Direct Send Compositing for Parallel Sort-Last Rendering
Stefan Eilemann and Renato Pajarola

Visualization and MultiMedia Lab, Department of Informatics, University of Zürich

Abstract

In contrast to sort-first, sort-last parallel rendering has the distinct advantage that the task division for parallel
geometry processing and rasterization is simple, and can easily be incorporated into most visualization systems.
However, the efficient final depth-compositing for polygonal data, or alpha-blending for volume data of partial
rendering results is the key to achieve scalability in sort-last parallel rendering. In this paper, we demonstrate
the efficiency as well as flexibility of the direct send sort-last compositing algorithm, and compare it to existing
approaches, both in a theoretical analysis and in an experimental setting.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Graphics Systems]: Distributed Graphics; I.3.m
[Miscellaneous]: Parallel Rendering; I.3.7 [Three-Dimensional Graphics and Realism]: Virtual Reality

1. Introduction

1.1. Motivation

Among the basic parallel rendering approaches outlined in
Figure 2 [MCEF94], sort-last has received increasing inter-
est from visualization application developers, see. for exam-
ple [CKS02, SML∗03, CMF05, CM06]. On one hand this is
due to the high scalability and good load-balancing it can
offer, but at least as important is its simplicity of task de-
composition which makes it a prime candidate to extend vi-
sualization software to high-performance parallel rendering.

bucketization
(sort)

G G G

F F F

graphics
database

display

sort screen-space
primitives

G G G

F F F

graphics
database

display

sort fragments
(composite)

G G G

F F F

graphics
database

display

geometry
processing

fragment
processing

Sort FirstSort MiddleSort Last

Figure 2: Fundamental sort-last, sort-middle and sort-first
rendering data processing stages.

The main sort-first parallel rendering’s bottleneck is its
overhead for processing split primitives on multiple tiles.

Moreover, besides this additional processing cost, the sort-
first bucketization is more complex to integrate into existing
visualization applications and non-trivial to load-balance,
hence limiting its scalability and general applicability. Sort-
middle solutions can only be implemented if intercepting
projected geometry before rasterization is supported by the
graphics system. Furthermore, it requires that rasterization
units are re-configurable on-the-fly to different viewport re-
gions for efficient load-balancing.

The compositing stage is the key element of the sort-
last parallel rendering pipeline. To benefit from a simple
and effective load-balanced task decomposition of geom-
etry processing and rasterization, the rendered intermedi-
ate images have to be composited together efficiently for
final display. Fundamentally, the amount of pixel data to
composite is a linear function of the number of parallel
rendering units as each generates a full-size partially com-
plete frame. In general the composition task is a per-pixel
z-buffer depth-visibility test, for polygonal data, or back-to-
front α-blending, for volume data. Several algorithms to ef-
ficiently parallelize the image composition task have been
proposed, with binary swap [MPHK94] being the most com-
monly used. In theory it achieves a constant compositing
time by distributing the work equally across all rendering
units. However, it requires a power-of-two number of paral-
lel processing units and exhibits a significant synchroniza-
tion overhead.

In this paper, we present an improved and more flexible
sort-last compositing algorithm called direct send (Figure 1).
We analyze its theoretical cost model with respect to com-

c© The Eurographics Association 2007.

Stefan Eilemann & Renato Pajarola / Direct Send Compositing

source 2 source 3 destination
(source1)source1

Figure 1: Sort-last rendering with direct send compositing using three channels. The first three images show the rendering
buffers which contain the rendering of the partial database and the composed tile of this channel. The last image shows the
final, visible destination view with the fully composited image. The channels use different clear colors to identify the tile layout.

positing time, and we provide experimental evidence that
it achieves the same or better performance as binary swap
while supporting any number of parallel rendering units.

2. Related Work

Most approaches to sort-last parallel rendering have devel-
oped special-purpose hardware solutions for the image com-
positing process. This trend was mainly due to the limited
pixel read-back rates and narrow bandwidth of the CPU-
GPU interface of contemporary graphics hardware. Sev-
eral hardware architectures have been designed in the past
for sort-last parallel rendering, such as Sepia [MSH99],
Sepia 2 [LMS∗01], Lightning 2 [SEP∗01], Metabuffer
[ZBB01], MPC Compositor [MOM∗01] and PixelFlow
[MEP92, EMP∗97], of which only a few have reached the
commercial product stage (i.e. Sepia 2 and MPC Composi-
tor). However, the inherent inflexibility and setup overhead
have limited their distribution and application support.

Software-based algorithms have two fundamental bottle-
necks in the composition: the CPU-GPU transfer and the
transmission from the source to the destination node. Recent
advances in the speed of CPU-GPU interfaces, such as PCI
Express, and system interconnects, such as InfiniBand, made
software-based sort-last composition feasible for interactive
applications.

The most simple sort-last compositing solution is the se-
rial approach which combines and merges all intermediate
images on the destination rendering unit responsible for the
final display. Several parallelization schemes for software
composition have been proposed. Most notably, these in-
clude direct send [SML∗03], binary tree [SGS91], binary
swap [MPHK94] and parallel pipeline [LRN95], among
which binary swap is the most commonly used algorithm.

Several improvements to the various parallel sort-last
compositing algorithms have been proposed. One approach
is to reduce the pixel data to cover only the screen-space
bounding rectangle, as in [YYC01]. Furthermore, to acceler-
ate the image transport several compression-based methods

have been proposed [AP98,TIH03,SKN04]. While these op-
timizations can dramatically improve the framerate, sort-last
rendering on high-resolution displays at interactive framer-
ates is still hard to achieve.

In the context of the proposed direct send compositing
algorithm we exploit fragment level optimizations using
a stencil-based z-buffer visibility compositing, or back-to-
front ordered α-blending method for polygonal and volume
data respectively.

3. Theoretical Analysis

Throughout this paper we use the parallel and distributed
rendering terminology introduced in the Equalizer frame-
work [Equ06]. Thus a channel is a single OpenGL view
within an OpenGL drawable, assumed to be executed on
a GPU and thread separate from other channels. A com-
pound is the structure used to describe the task decompo-
sition and partial-result recomposition in parallel rendering
as described in [BRE05].

3.1. Algorithm Overview

In sort-last parallel rendering, the main task decomposi-
tion for geometry processing and rasterization is a simple
database partitioning. This partitioning is often trivial, in
contrast to sort-first parallel rendering, and not further dis-
cussed here [MCEF94]. On the other hand, the task of final
image compositing, which is a simple image mosaic assem-
bly in sort-first, is more demanding in sort-last parallel ren-
dering. Generally, n rendering channels will generate n full-
size partial images, containing color and potentially depth.
These n images have to be merged considering per-fragment
z-visibility, or α-blending in volume rendering.

Direct send compositing divides this final image gather-
ing task into n screen-space tiles to avoid exchanging full-
size images between the n compositing channels. Each tile is
associated to and composited by one channel, and the com-
posited tiles are eventually assembled together to form the

c© The Eurographics Association 2007.

Stefan Eilemann & Renato Pajarola / Direct Send Compositing

final image. Note that while we assume the drawing – geom-
etry transform, lighting, and rasterization – and compositing
channels to coincide, this is not a general restriction as com-
positing can be assigned to a subset of the drawing channels
or to a different set of channels altogether. An important ob-
servation though, is that the layout and shape of the tiles can
be arbitrary and optimized for the best frame-buffer read-
back and write access path provided by the graphics hard-
ware.

Figure 3 illustrates the z-compositing stages for a 3-
channel parallel polygonal rendering compound. After draw-
ing the partial databases – the scene divided into n parts – the
n image tiles are exchanged between the channels and com-
posited one on each channel. Finally the n− 1 missing tiles
are assembled on the channel responsible for final display.

re
ad
-b
ac
k

send/receive

co
m
po
sit
e

re
ad
-b
ac
k

ga
th
er

tile
s

source1
(destination) source 2 source 3

send/receive

Figure 3: Direct send compositing with three channels.

Figure 4 shows the corresponding fragment operations of
the three channels from Figure 3. Each channel has to read
back n− 1 image tiles from its own frame-buffer and send
them to the appropriate compositors, and in turn receives n−
1 image parts for its ’own’ tile z-composition.

In the following theoretical analysis we will focus on the
total time cost for the composition stage. As mentioned ear-
lier, we assume that the drawing channels are also the com-
positing channels. The other operations to form the image,
such as the draw update, are not relevant in the context of this
theoretical discussion. We compare our algorithm against the
simple serial composition and binary swap. We assume a
similar rendering cost per channel, full-frame pixel coverage
and equal tile distribution.

read
color, depth

read
color, depth

source 2 source 3

clear
draw

clear
draw

write
2x color

read
color

clear
draw

read
color

read
color, depth
composite

2x color, depth

read
color, depth

read
color, depth

read
color, depth
composite

2x color, depth
composite

2x color, depth

source1
(destination)

Figure 4: Three channel per-frame update operations.

3.2. Serial Composition

For serial composition, all channel images are directly com-
posited on the destination channel. As expected, the com-
plexity of this algorithm is linear O(n). Let us assume that
tr is the time to perform a full frame read-back (color and
depth), tl is the latency introduced by transmitting a full
frame from one channel to another and td is the time to do
a full frame composition. Considering that the read-back is
done in parallel on all channels, the total serial compositing
time tserial using n channels is then:

tserial = tr +(n−1) ·max(tl , td) (1)

The delay (n− 1) ·max(tl , td) is caused by the fact that
n−1 full frame images have to be sent to and composited on
a single destination channel one-by-one. Without pipelining
the transmission and composition tasks, the delay would ef-
fectively increase to (n−1) ·(tl +td). The overall image data
exchanged is simply n−1 times a full frame.

3.3. Direct Send

Direct send executes six operations to form the final display
image: (i) read-back of n−1 tiles, (ii) send the tiles to their
compositing channels, (iii) composition of n− 1 copies of
the tile it ’owns’, (iv) read-back of n−1 composited tiles, (v)
send tiles to final display destination channel, (vi) assemble
the n− 1 received tiles into the final image on the destina-
tion channel. Steps i to iii are performed on each channel,
Steps iv and v on n−1 (source) channels and Step vi is ex-
ecuted only on the final display (destination) channel. The
direct send compositing time tds then consists of:

tds = tcomposite + tread tile + tgather (2)

The individual times are given below. The composition
time tcomposite (3) consists of reading back and sending n−1
tiles, and pipelined composition of n−1 tiles from the other
channels, each of size 1

n . The read-back and compositing
is performed in parallel on all channels without overhead.
Moreover, also the exchange of tiles between channels does

c© The Eurographics Association 2007.

Stefan Eilemann & Renato Pajarola / Direct Send Compositing

not incur any other overhead, besides n−1
n · tl , since each

channel sends and receives exactly n− 1 partial frames of
size 1

n . The time tread tile (4) consists of reading back a single
tile of size 1

n on each source channel from the frame buffer,
with trc being the time to read a (color only) full frame. The
gathering step with tgather (5) receives n−1 tiles of size 1

n on
the destination channel from all source channels and draws
them (pipelined) side-by-side into the final destination frame
buffer, with tdc being the time to draw and tlc the latency of
receiving a full frame.

tcomposite = n−1
n · (tr +max(tl , td)) (3)

tread tile = trc
n (4)

tgather = n−1
n ·max(tlc, tdc) (5)

In contrast to serial compositing, image transmission is
performed concurrently as tiles of size 1

n are exchanged be-
tween all channels. Thus there is only tl

n latency to be intro-
duced per tile. Furthermore, the amortized image data trans-
mitted between all channels is only two full frames†, in con-
trary to the n−1 full frames for serial compositing. One full
frame of image data is exchanged in both, the compositing
and the gathering stage.

Note that direct send is capable of using a different num-
ber of channels for compositing and drawing. The composit-
ing time changes when using n compositing channels on m
draw channels (n ≤ m). Each compositing channel has to
read back n−1 tiles of size 1

n , and to composite m−1 tiles
of the same size. Thus we can exchange the term (3) from
above in Equation 2 by

tcomposite =
n−1

n
· tr +

m−1
n

·max(tl , td). (6)

The readback time of the draw-only channels (n tiles of
size 1

n , i.e., a full frame) is completely hidden by the com-
positing time of the other channels.

3.4. Binary Swap

Binary swap [MPHK94] consists of the same steps for the
tile read-back, compositing and final gathering as direct
send. However, the composition step differs in that a series of
log2 n composition steps are executed, as illustrated in Fig-
ure 5 for n = 4. After each step, half of the assembled image
region is swapped with a partner channel for composition,
until all tiles have been fully assembled. Since only pairs of
nodes exchange image tiles for composition in each step, no
pipelining of transmission and compositing is possible. The
term (3) is thus replaced for binary swap by:

tcomposite =
blog2 nc

∑
i=1

1
2i · (tr + tl + td). (7)

† actually 2 · n−1
n full frames

In each step i a fractional image frame region of size 1
2i

is exchanged between partner channels which amortizes to
a full image frame during the compositing stage eventually
(∑

log2 n
i=1

1
2i ≤ 1). Another full frame is to be received by the

destination channel during the gathering stage for final as-
sembly and display.

source 2 source 3source1
(destination) source 4

Figure 5: Binary swap compositing with four channels.

3.5. Comparison

In theory, the composition time for binary swap and direct
send only differ in the main compositing time tcomposite. The

series ∑
blog2 nc
i=1

1
2i in (7) approaches 1.0. If a power-of-two

number n of channels for drawing and compositing is used,
the total composition time tbinary then converges to:

tbinary ≈ tr + tl + td +max(tlc, tdc). (8)

On the other hand, for direct send and for any number n
of channels, due to pipelining of the transmission and com-
positing tasks, the total composition time tsend converges to:

tsend ≈ tr +max(tl , td)+max(tlc, tdc) (9)

Binary swap is based on log2 n tiles per channel, whereas
direct send uses n− 1 tiles. Note that the higher number of
tiles used by direct send could have a negative impact on
performance only if the compositing or frame buffer read-
back operations have a significant static setup cost.

Transmission of image data is equivalent for both algo-
rithms as two times a full frame of image data is exchanged
between the contributing channels. An advantage of direct
send is that image regions exchanged between channels can
be limited to a constant 1/n of a full frame, hence limiting
peak point-to-point image transfer bandwidth. In contrast,
binary swap starts out with 1/2 sized tiles and reaches 1/n

c© The Eurographics Association 2007.

Stefan Eilemann & Renato Pajarola / Direct Send Compositing

regions only in its last of the log2 n steps. Note that we as-
sumed here that the total communication bandwidth, i.e. in
the network switch, is sufficiently high to service the con-
current point-to-point image transmissions during the com-
positing stage of both direct send and binary swap. If this
assumption does not hold, the communication patterns and
the peak point-to-point image transfer bandwidth may have
to be considered in more detail.

However, the main difference between binary swap and
direct send lies in the synchronization and flexibility. While
direct send only needs two synchronization points, indepen-
dently of the number n of channels, binary swap depends on
log2 n + 1 synchronization points. As observed in [CMF05]
this can have a significant negative impact on the parallelism,
in particular as n grows.

Moreover, the direct send algorithm adapts to any num-
ber of channels with the same performance characteristic,
and easily supports any combination of different numbers
of drawing and compositing channels. Additionally, the low
constant synchronization overhead scales well and is a sig-
nificant advantage in cluster-parallel environments where
any latency due to network transfer synchronization may
cause dramatic slow downs.

4. Implementation

We have implemented the proposed direct send compositing
algorithm along with binary swap and serial compositing in
the Equalizer parallel rendering framework [Equ06]. Equal-
izer provides a generic toolkit for parallel, scalable multipipe
rendering and is designed to work transparently on a single
workstation, shared memory multipipe graphics system or a
rendering cluster.

Equalizer applications are configured by a central re-
source server. A server configuration consists of two parts:
the resource description and the usage description of the re-
sources. The resource description is a hierarchical structure.
On the top level, nodes define the machines of the render-
ing cluster. Each node has pipes which describe the graph-
ics cards and are an execution thread in Equalizer. Each
pipe has windows, which encapsulate the OpenGL context
and drawable. Each window has channels, which are two-
dimensional viewports within the window. In the typical de-
ployment case, one channel and one window per pipe is used
for optimal performance. Channels are used by compounds,
which describe the resource usage. Compounds in Equal-
izer [EqC06] form a tree, where the top-level compound typ-
ically defines the final display. Each compound has tasks and
a channel, which is used to execute the tasks. Possible tasks
are: clear, draw, assemble and readback.

In this context, sort-last parallel rendering is defined by
a multi-level compound. The top-level compound describes
the final display setup as a single channel and has n children
defining multiple full-frame viewports for parallel sort-last

image compositing. Each of the children, with the excep-
tion of the destination channel, has a child which executes
the rendering, as well as the first step of reading back the
tiles for composition. The intermediate compound then as-
sembles the tiles from the other channels and reads back his
complete color tile. The destination channel does not need
the intermediate compound, as the top-level compound ex-
ecutes the task of assembling the destination channel’s tile
and, in addition, the gathering of the complete color tiles
from all sources. Figure 6 illustrates the compound tree for
a three channel direct send configuration shown in Figure 3,
using all contributing channels for drawing.

channel "source1"

ASSEMBLE
 inputframe "f2.dest"
 inputframe "f2.source2"
READBACK
 outputframe COLOR "frame.source1" viewport [0 ⅔ 1 ⅓]

range [⅓ ⅔]
CLEAR, DRAW
READBACK
 outputframe "f1.source1" viewport [0 0 1 ⅓]
 outputframe "f2.source1" viewport [0 ⅓ 1 ⅓]

channel "destination"
buffer [COLOR DEPTH]
wall { ... }

range [0 ⅓]
CLEAR, DRAW
READBACK
 outputframe "f1.dest" viewport [0 ⅓ 1 ⅓]
 outputframe "f2.dest" viewport [0 ⅔ 1 ⅓]

channel "source2"

ASSEMBLE
 inputframe "f2.source1"
 inputframe "f1.dest"
READBACK
 outputframe COLOR "frame.source2" viewport [0 ⅓ 1 ⅓]

range [⅔ 1]
CLEAR, DRAW
READBACK
 outputframe "f1.source2" viewport [0 ⅓ 1 ⅓]
 outputframe "f2.source2" viewport [0 ⅔ 1 ⅓]

ASSEMBLE
 inputframe "f1.source1"
 inputframe "f1.source2"
 inputframe "frame.source1"
 inputframe "frame.source2"

Figure 6: A compound tree for a three-channel direct send
decomposition. Compounds with the same color use the
same channel and a separate execution thread. The image
data flow for one tile is illustrated.

The Equalizer server traverses the compound tree once
per frame. During this traversal tasks are generated from the
compound description. These tasks are sent to the render-
ing clients, which execute them in the order they arrive, in a
separate thread for each pipe.

For network transmission Equalizer compresses the image
data using a fast, modified RLE algorithm, which exploits
certain characteristics of the image data. Our compression
algorithm achieves approximately a compression of 50% at
a rate of 650MB/s on a 2.2Ghz AMD Opteron processor.
Furthermore, the compression rate generally improves with
the number of nodes in sort-last rendering since the images

c© The Eurographics Association 2007.

Stefan Eilemann & Renato Pajarola / Direct Send Compositing

become more sparse as the number of nodes increases. The
receiving node decompresses the data immediately upon re-
ception, which happens in a separate thread from the pipe
thread(s). Therefore the decompression can be overlapped
with rendering. All sort-last compositing algorithms com-
pared in this paper benefit equally from this image transmis-
sion optimization.

The implementation of direct send in Equalizer is an out-
come of the flexible compound configuration, not a hard-
coded feature. Using the same implementation, we were able
to configure the serial assembly compositing, as well as bi-
nary swap compositing using a slightly more complicated
compound tree. Furthermore, the implementation allows for
a variety of parallel compositing algorithms, for example by
using a subset or different set of channels for composition.

5. Results

We conducted our experiments on a six node rendering clus-
ter with the following characteristics: dual 2.2GHz AMD
Opteron CPUs, 4GB of RAM, Geforce 7800 GTX PCIe
graphics and a high-resolution 2560x1600 pixel LCD panel
per node; 1GB network and switch. For most tests we used
a destination channel with a resolution of 1280x800, since
this is closer to a typical window size for scalable parallel
rendering. Pixel read, write and network transmission per-
formances for the full-screen content of such a window are:

GL Format, Type read write transmit
RGBA, 12.14ms 5.64ms 42.05ms
UNSIGNED_BYTE
DEPTH_COMPONENT, 9.86ms 33.96ms 36.41ms
FLOAT

Our test application renders polygonal data (Figures 1
and 9), organized spatially in an octree for efficient view
frustum culling and sort-last range selection. The data is ren-
dered using display lists, and each vertex consist of 24 bytes
(position+normal). We use a fixed camera path of 100 frames
to obtain the total (accumulated) rendering time as the result.

5.1. Scalability Benchmarks

The first three charts show one data set rendered on n pipes
using four different configurations. (1) ’DB binary swap’
uses binary swap compositing, and consequently only dat-
apoints at a power-of-two number of nodes are available.
(2) ’DB direct send’ is our new algorithm using any num-
ber of channels for the composition. (3) ’DB serial’ uses se-
rial composition where all data is assembled on the desti-
nation channel. (4) ’DB baseline’ performs no composition
and provides an upper limit for the achievable performance
by measuring the parallelism of the draw operation. Addi-
tionally, the linear speedup line is marked for comparison.

We have also conducted a sample using eight pipes on
our six node cluster. The two nodes running two threads did

render 10% of the database per thread, all others did render
15%. Note that the results for 8 nodes are only a qualita-
tive indicator, and can not directly be compared to the other
results.

5.1.1. Model Size

Figure 7a) shows the results of our first test run which uses
a small model with less than one million triangles. The draw
time of this model is negligible compared to the composition
time. This benchmark illustrates the composition overhead
of the various algorithms. The singlepipe rendering perfor-
mance for this model is 42 frames per second. The base-
line shows that almost no scalability is possible with such
a small model: the rendering with six nodes is only 1.34
times faster than singlepipe rendering. Any compositing al-
gorithm actually decreases the rendering performance. The
serial composition shows a linear increase in rendering time,
as expected from the theoretical discussion. When using di-
rect send composition, the rendering performance increases
again slightly when using three nodes or more due to the
parallelism in the composition. Binary swap has the same
behaviour, though with slightly less performance.

Figure 7b) shows the results of a medium-sized model.
The draw time becomes significant, especially since it is not
possible to fit all the data onto a single GPU, as shown by the
super-linear speedup of the baseline. The singlepipe render-
ing performance for this data set is 1.3 frames per second.
The serial configuration scales up to only four nodes with a
performance of 4.3 FPS (3.2x speedup), afterwards the com-
position term increases the total rendering time. Direct send
shows good scalability up to six nodes with a performance
of 7.7 FPS (5.9x speedup), but at five and six node counts
we can observe some composition and synchronization over-
head. Binary swap is slightly slower due to the higher syn-
chronization overhead, with a 4.6x speedup compared to a
4.9x speedup for direct send at four nodes.

The last scalability benchmark in Figure 7c) uses a large
model. Again, the model shows the expected superlinear
speedup for the baseline. The singlepipe rendering time for
this data set is 0.39 frames per second. The composition
time is less relevant for this model, as the rendering time
increases. We can again exhibit the increasing bottleneck of
the serial composition with a higher number of nodes. The
constant composition time of direct send allows a superlinear
speedup of the total rendering time. Binary swap shows the
same behaviour, with almost exactly the same performance.
This model achieves a 6.8x speedup when using six pipes
with direct send compositing.

5.1.2. Viewport Size

In this benchmark we measured the influence of the viewport
size, and therefore the amount of transferred pixel data, on
the total rendering time. We used the same model as in Fig-
ure 7b) to measure the total rendering time with direct send

c© The Eurographics Association 2007.

Stefan Eilemann & Renato Pajarola / Direct Send Compositing

0

0.5

1.0

1.5

2.0

1 2 3 4 5 6 nodes [8]

DB binary swap
DB direct send
DB serial
DB baseline
linear

x

Armadillo, 346 KTris

1.0

3.2

5.4

7.6

9.8

12.0

1 2 3 4 5 6 nodes [8]

DB binary swap
DB direct send
DB serial
DB baseline
linear

xyzrgb_statuette, 10 MTris

x

1

3

5

7

9

1 2 3 4 5 6 nodes [8]

DB binary swap
DB direct send
DB serial
DB baseline
linear

lucy, 28 MTris

x

a) b) c)

Figure 7: Parallel speedup of serial, binary swap and direct send compositing for a) small, b) medium and c) large data.

compositing. The graph shows the expected asymptotic be-
haviour towards the constant composition cost of direct send,
regardless of the viewport size. As outlined in the theoretical
discussion, the composition cost is directly dependent on the
viewport size, which we increased quadratically here.

5

25

45

65

85

1 2 3 4 5 6

640x400
1280x800
2560x1600

nodes

s

xyzrgb_statuette, 10 MTris

Figure 8: Influence of the viewport size on the total render-
ing time.

5.2. Interpretation

Overall, the scalability tests show that the direct send al-
gorithm behaves as expected. Direct send shows better
performance and scalability than serial compositing, and
marginally better performance than binary swap. Depend-
ing on the model size and screen-space distribution, there is
a tradeoff point where the composition time becomes domi-
nant and performance declines.

We have shown that with direct send compositing we
can scale the rendering time up to several parallel render-
ing nodes. Especially with the medium model size we can
see that with a higher number of nodes the synchronization
overhead may become a factor limiting the parallelism. The
flexibility of direct send, however, allows to use the opti-
mal number of compositing channels independently from
the number of parallel rendering channels. Furthermore, it
allows to optimally use rendering clusters with a non-power-
of-two number of nodes.

6. Conclusions

In this paper, we have presented the direct send sort-last
compositing algorithm and evaluated its implementation in a
generic parallel rendering framework. We have shown in the
theoretical discussion that our algorithm provides the same,
if not better performance as binary swap, and far superior
performance than serial compositing. In the results section
we have supported the theoretical results by experiments on
a parallel rendering cluster.

The implementation of a flexible compositing engine in
Equalizer is a first step towards a generic, scalable rendering
engine. We will in the future focus on a number of further op-
timizations to provide better compositing performance, and
therefore parallel rendering scalability.

Currently the network transfer is a major bottleneck. By
optimizing the network performance, either directly by tun-
ing the socket code, or indirectly by decreasing the amount
of pixels transferred, we plan to decrease the impact of this
bottleneck. The network transfer speed can be increased by
using zero-copy transfers, asynchronous transmission or by
upgrading to a high-performance interconnect bypassing the
TCP/IP stack. The amount of pixel data transferred can be
improved by improved fast compression algorithms and by
limiting the data to the actual screen-space viewport updated
by the draw operation.

We are currently updating our benchmark application to
provide better raw rendering performance. In particular, we
are looking into using vertex buffer objects (VBO) to im-
prove rendering speed, and into using a three-dimensional
kd-tree instead of the current octree. The latter optimization
will provide better spatial distribution of the data base dur-
ing sort-last rendering, and therefore sparser images, and a
more equal data distribution across nodes.

Acknowledgements

We would like to thank and acknowledge the Stanford 3D
Scanning Repository for providing the 3D geometric test
data sets.

c© The Eurographics Association 2007.

Stefan Eilemann & Renato Pajarola / Direct Send Compositing

a) b)

Figure 9: Destination view of the a) large and b) medium
model of a six node sort-last configuration, using a different
draw color for each node.

References

[AP98] AHRENS J., PAINTER J.: Efficient sort-last rendering
using compression-based image compositing. In Proceedings
Eurographics Workshop on Parallel Graphics and Visualization
(1998), pp. 145–151.

[BRE05] BHANIRAMKA P., ROBERT P. C. D., EILEMANN S.:
OpenGL Multipipe SDK: A toolkit for scalable parallel render-
ing. In Proceedings IEEE Visualization (2005), pp. 119–126.

[CKS02] CORREA W. T., KLOSOWSKI J. T., SILVA C. T.:
Out-of-core sort-first parallel rendering for cluster-based tiled
displays. In Proceedings Eurographics Workshop on Parallel
Graphics and Visualization (2002), pp. 89–96.

[CM06] CAVIN X., MION C.: Pipelined sort-last rendering: Scal-
ability, performance and beyond. In Proceedings Eurographics
Symposium on Parallel Graphics and Visualization (2006).

[CMF05] CAVIN X., MION C., FILBOIS A.: COTS cluster-based
sort-last rendering: Performance evaluation and pipelined imple-
mentation. In Proceedings IEEE Visualization (2005), pp. 111–
118.

[EMP∗97] EYLES J., MOLNAR S., POULTON J., GREER

T., LASTRA A., ENGLAND N., WESTOVER L.: Pix-
elFlow: The realization. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics Hardware
(1997), pp. 57–68.

[EqC06] Equalizer compound specification.
http://www.equalizergraphics.com/documents/design/com-
pounds.html, 2006.

[Equ06] Equalizer. http://www.equalizergraphics.com/, 2006.

[LMS∗01] LOMBEYDA S., MOLL L., SHAND M., BREEN D.,
HEIRICH A.: Scalable interactive volume rendering using off-
the-shelf components. In Proceedings of the IEEE Symposium
on Pparallel and large-data Visualization and Graphics (2001),
pp. 115–121.

[LRN95] LEE T.-Y., RAGHAVENDRA C. S., NICHOLAS J. N.:
Image composition methods for sort-last polygon rendering on
2-d mesh architectures. In Proceedings of the IEEE Symposium
on Parallel Rendering (1995), pp. 55–62.

[MCEF94] MOLNAR S., COX M., ELLSWORTH D., FUCHS H.:
A Sorting Classification of Parallel Rendering. IEEE Computer
Graphics and Algorithms (July 1994), 23–32.

[MEP92] MOLNAR S., EYLES J., POULTON J.: PixelFlow: High-
speed rendering using image composition. In Proceedings ACM
SIGGRAPH (1992), pp. 231–240.

[MOM∗01] MURAKI S., OGATA M., MA K.-L., KOSHIZUKA

K., KAJIHARA K., LIU X., NAGANO Y., SHIMOKAWA K.:
Next-generation visual supercomputing using PC clusters with
volume graphics hardware devices. In Proceedings ACM/IEEE
Conference on Supercomputing (2001), pp. 51–51.

[MPHK94] MA K.-L., PAINTER J. S., HANSEN C. D., KROGH

M. F.: Parallel Volume Rendering Using Binary-Swap Image
Composition. IEEE Computer Graphics and Algorithms (July
1994).

[MSH99] MOLL L., SHAND M., HEIRICH A.: Sepia: Scalable
3D compositing using PCI pamette. In Proceedings IEEE Sym-
posium on Field-Programmable Custom Computing Machines
(1999), p. 146.

[SEP∗01] STOLL G., ELDRIDGE M., PATTERSON D., WEBB A.,
BERMAN S., LEVY R., CAYWOOD C., TAVEIRA M., HUNT S.,
HANRAHAN P.: Lightning-2: A high-performance display sub-
system for PC clusters. In Proceedings ACM SIGGRAPH (2001),
pp. 141–148.

[SGS91] SHAW C. D., GREEN M., SCHAEFFER J.: A VLSI
architecture for image composition. In Advances in Computer
Graphics Hardware III (Eurographics’88 Workshop) (London,
UK, 1991), Springer-Verlag, pp. 183–200.

[SKN04] SANO K., KOBAYASHI Y., NAKAMURA T.: Differen-
tial coding scheme for efficient parallel image composition on a
pc cluster system. Parallel Computing 30, 2 (2004), 285–299.

[SML∗03] STOMPEL A., MA K.-L., LUM E. B., AHRENS J.,
PATCHETT J.: SLIC: Scheduled linear image compositing for
parallel volume rendering. In Proceedings IEEE Symposium
on Parallel and Large-Data Visualization and Graphics (2003),
pp. 33–40.

[TIH03] TAKEUCHI A., INO F., HAGIHARA K.: An improved
binary-swap compositing for sort-last parallel rendering on dis-
tributed memory multiprocessors. Parallel Computing 29, 11-12
(2003), 1745–1762.

[YYC01] YANG D.-L., YU J.-C., CHUNG Y.-C.: Efficient com-
positing methods for the sort-last-sparse parallel volume render-
ing system on distributed memory multicomputers. Journal of
Supercomputing 18, 2 (2001), 201–220.

[ZBB01] ZHANG X., BAJAJ C., BLANKE W.: Scalable isosur-
face visualization of massive datasets on cots clusters. In Pro-
ceedings IEEE Symposium on Parallel and Large Data Visual-
ization and Graphics (2001), pp. 51–58.

c© The Eurographics Association 2007.

Stefan Eilemann & Renato Pajarola / Direct Send Compositing

source 2 source 3 destination
(source1)source1

Figure 1: Sort-last rendering with direct send compositing using three channels.

re
ad
-b
ac
k

send/receive

co
m
po
sit
e

re
ad
-b
ac
k

ga
th
er

tile
s

source1
(destination) source 2 source 3

send/receive

Figure 3: Direct send compositing data flow.

a) b)

Figure 9: Destination view of the a) large and b) medium
model of a six node sort-last configuration, using a different
draw color for each node.

c© The Eurographics Association 2007.

