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Part I.

User Guide
1. Introduction

Equalizer is the standard middleware for the development and deployment of paral-
lel OpenGL applications. It enables applications to benefit from multiple graphics
cards, processors and computers to scale rendering performance, visual quality and
display size. An Equalizer-based application runs unmodified on any visualization
system, from a simple workstation to large scale graphics clusters, multi-GPU work-
stations and Virtual Reality installations.

This User and Programming Guide introduces parallel rendering concepts, the
configuration of Equalizer-based applications and programming using the Equalizer
parallel rendering framework.

Equalizer is the most advanced middleware for scalable 3D visualization, provid-
ing the broadest set of parallel rendering features available in an open source library
to any OpenGL application. Many commercial and open source applications in a
variety of different markets rely on Equalizer for flexibility and scalability.

Equalizer provides the domain-specific parallel rendering know-how and abstracts
configuration, threading, synchronization, windowing and event handling. It is a
‘GLUT on steroids’, providing parallel and distributed execution, scalable rendering
features, network data distribution and fully customizable event handling.

If you have any question regarding Equalizer programming, this guide, or other
specific problems you encountered, please direct them to the eq-dev mailing list5.

1.1. Parallel Rendering

yesyesyes
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exit ?

update data

exit config
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start

init config
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exit?
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exit?
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swap
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draw

swap

init windows
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Figure 1: Parallel Rendering

Figure 1 illustrates the ba-
sic principle of any parallel
rendering application. The
typical OpenGL application,
for example GLUT, has an
event loop which redraws the
scene, updates data based on
received events, and eventu-
ally redraws a new frame.

A parallel rendering appli-
cation uses the same basic
execution model and extends
it by separating the render-
ing code from the main event
loop. The rendering code is
then executed in parallel on
different resources, depending
on the configuration chosen
at runtime.

This model is naturally
followed by Equalizer, thus
making application develop-
ment as easy as possible.

5http://www.equalizergraphics.com/lists.html
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1. Introduction

1.2. Installing Equalizer and running eqPly

Equalizer can be installed by downloading the distribution6 and compiling the
source code. After installing Equalizer, please take a look at the Quickstart Guide7

to get familiar with the capabilities of Equalizer and the eqPly example.
Compiling Equalizer is as simple as running make on Linux or Mac OS X, building

the provided XCode project on Mac OS X 10.5, or building the Equalizer Visual Stu-
dio 2005 solution on Windows. Note that on Mac OS X 10.4 (Tiger), some prereq-
uisites have to be installed before running make, as explained in README.Darwin.

1.3. Equalizer Processes

The Equalizer architecture is based on a client-server model. The client library ex-
poses all functionality discussed in this document to the programmer, and provides
communication between the different Equalizer processes. The underlying network
layer uses a peer-to-peer structure, allowing render clients to communicate directly
with each other, e.g., during parallel compositing.

1.3.1. Server

Each Equalizer server is responsible for managing one visualization system, i.e., a
shared memory system or graphics cluster. It controls and launches the application’s
rendering clients. Currently, Equalizer only supports one application per server, but
it will provide concurrent and efficient multi-application support in the future.

1.3.2. Application

The application connects to an Equalizer server and receives a configuration. Fur-
thermore, the application also provides its render client, which will be controlled
by the server. The application reacts on events, updates its data and controls the
rendering.

1.3.3. Render Clients

libeq.so

Application

libeq.so
Application 

Render Client

libeq.so
Application 

Render Client

libeq.so
Application 

Render Client

provides co
ntro

ls

drives
libeq.so

Equalizer 
Server

Figure 2: Equalizer Processes

The render client implements
the rendering part of an
application. Its execution
is passive, it has no main
loop and is completely driven
by Equalizer. It executes
the rendering tasks received
from the server by calling
the appropriate task meth-
ods (see Section 5.2) in the
correct thread and context.
The application either im-
plements the task methods
with application-specific code
or uses the default methods
provided by Equalizer.

The application can also be
a rendering client, in which case it can also contribute to the rendering. If it does

6http://www.equalizergraphics.com/downloads.html
7http://www.equalizergraphics.com/documents/EqualizerGuide.html
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2. Scalable Rendering

not implement any render client code, it is reduced to be the application’s ‘master’
process without any OpenGL windows and 3D rendering.

The rendering client can be the same executable as the application, as it is the
case with all provided examples. When it is started as a render client, the Equal-
izer initialization routine does not return and takes over the control by calling the
render client task methods. Complex applications usually implement a separate,
lightweight rendering client.

2. Scalable Rendering

Real-time visualization is an inherently parallel problem. Unfortunately, different
applications have different rendering algorithms, which require different scalable
rendering modes to address the bottlenecks correctly. Equalizer supports all im-
portant algorithms as listed below, and will continue to add new ones over time to
meet application requirements.

This section gives an introduction to scalable rendering, providing some back-
ground for end users and application developers. The scalability modes offered by
Equalizer are discussed, along with their advantages and disadvantages.

Choosing the right mode for the application profile is critical for performance.
Equalizer uses the concept of compounds to describe the task decomposition and
result recomposition. It allows the combination of the different compound modes
in any possible way, which allows to address different bottlenecks in a flexible way.

2.1. 2D or Sort-First Compounds

2D decomposes the rendering in screen-space, that is, each contributing rendering
unit processes a tile of the final view. The recomposition simply assembles the tiles
side-by-side on the destination view. This mode is also known as sort-first or SFR.

channel "buffer3"
viewport [ upper-left ]

outputframe "tile.b3"

channel "buffer2"
viewport [ lower-right ]

outputframe "tile.b2"

channel "buffer1"
viewport [ lower-left ]

outputframe "tile.b1"

channel "destination"
wall { ... }

inputframe "tile.b1"
inputframe "tile.b2"
inputframe "tile.b3"

channel "destination"
viewport [ upper-right ]

Figure 3: A 2D compound

The advantage of this mode
is a low, constant IO overhead
for the pixel transfers, since
only color information has to
be transmitted. The upper
limit is the amount of pixel
data for the destination view.

Its disadvantage is that it
relies on view frustum culling
to reduce the amount of data
submitted for rendering. De-
pending on the application
data structure, the overlap of some primitives between individual tiles limits the
scalability of this mode, typically to around eight graphics cards. Each node has to
potentially hold the full database for rendering.

2D decompositions can be used by all types of applications, but should be com-
bined with DB compounds to reduce the data per node, if possible. In most cases,
a loadBalancer should be used to automatically adjust the tiling each frame, based
on the current rendering load.

2D compounds in Equalizer are configured using the viewport parameter, using
the values [ x y width height] in normalized coordinates. The viewport defines the
area of the parent (destination) channel to be rendered for each child. Each child
compound uses an output frame, which is connected to an input frame on the
destination channel. The destination channel can also be used as a source channel,
in which case it renders in place and no output frame is needed.
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2.2. DB or Sort-Last Compounds

DB, as shown in Figure 48, decomposes the rendered database so that all rendering
units process a part of the scene in parallel. This mode is also known as sort-last,
and is very similar to the data decomposition approach used by HPC applications.

Volume rendering applications use an ordered alpha-based blending to composite
the result image. The depth buffer information is used to composite the individual
images correctly for polygonal data.

This mode provides very good scalability, since each rendering unit processes only
a part of the database. This allows to lower the requirements on all parts of the
rendering pipeline: main memory usage, IO bandwidth, GPU memory usage, vertex
processing and fill rate.

Unfortunately, the database recomposition has linear increasing IO requirements
for the pixel transfer. Parallel recomposition algorithms, such as direct-send address
this problem by keeping the per-node IO constant (see Figure 42).

channel "buffer2"
range [ 3rd quarter ]

outputframe "frame.b2"

channel "buffer1"
range [ 2nd quarter ]

outputframe "frame.b1"

channel "destination"
wall { ... }

inputframe "frame.b1"
inputframe "frame.b2

channel "destination"
range [ 1st quarter ]

Figure 4: A database compound

The application has to par-
tition the database so that
the rendering units render
only part of the database.
Some OpenGL features do
not work correctly (anti-
aliasing) or need special at-
tention (transparency).

The best use of database
compounds is to divide the
data to a manageable size,
and then to use other decom-
position modes to achieve fur-
ther scalability. Volume ren-
dering is one of the applica-
tions which can profit from
database compounds.

DB compounds in Equal-
izer are configured using the range parameter, using the values [ begin end ] in
normalized coordinates. The range defines the start and end point of the applica-
tion’s database to be rendered. The value has to be interpreted by the application’s
rendering code accordingly. Each child compound uses an output frame, which is
connected to an input frame on the destination channel. For more than two con-
tributing channels, it is recommended to configure streaming or parallel direct send
compositing, as described in Section 7.7.2.

2.3. Stereo Compounds

Stereo compounds, as shown in Figure 59, assign each eye pass to individual ren-
dering units. The resulting images are copied to the appropriate stereo buffer. This
mode supports a variety of stereo modes, including active (quad-buffered) stereo,
anaglyphic stereo and auto-stereo displays with multiple eye passes.

Due to the frame consistency between the eye views, this modes scales very well.
The IO requirements for pixel transfer are small and constant.

The number of rendering resources used by stereo compounds is limited by the
number of eye passes, typically two.

83D model courtesy of AVS, USA.
93D model courtesy of Stereolithography Archive at Clemson University.
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Stereo compounds are used by all applications when rendering in stereo, and is
often combined with other modes.

channel "buffer"
eye [ RIGHT ]

outputframe "frame"

channel "destination"
wall { ... }

inputframe "frame"

channel "destination"
eye [ LEFT ]

Figure 5: A stereo compound

Eye compounds in Equal-
izer are configured using the
eye parameter, limiting the
child to render the [ LEFT
] or [ RIGHT ] eye. Each
child compound uses an out-
put frame, which is connected
to an input frame on the des-
tination channel. The des-
tination channel can also be
used to render an eye pass, in
which case it renders in the
correct stereo buffer and no
output frame is needed.

2.4. DPlex Compounds

DPlex compounds assign full, alternating frames to individual rendering units. The
resulting images are copied to the destination channel, and Equalizer load-balancing
is used to ensure a steady framerate on the destination window. This mode is also
known as time-multiplex or AFR.

channel "buffer1"
period 3 phase 0

outputframe "DPlex"

channel "buffer3"
period 3 phase 2

outputframe "DPlex"

channel "buffer2"
period 3 phase 1

outputframe "DPlex"

channel "destination"
wall { ... }

inputframe "DPlex"

Figure 6: A DPlex compound

Due to the frame con-
sistency between consecutive
frames, this mode scales very
well. The IO requirements for
pixel transfer are small and
constant.

DPlex requires a latency
of at least n frames. This
increased latency might be
disturbing to the user, but
it is often compensated by
the higher frame rate. The
frame rate typically increases
linearly with the number of
source channels, and there-
fore linearly with the latency.

DPlex compounds in Equal-
izer are configured using the
period and phase parameter,
limiting each child to render a subset of the frames. Each child compound uses
an output frame, which is connected to an input frame on the destination channel.
The destination channel uses a DPlex load-balancer to smoothen the framerate.

2.5. Pixel Compounds

Pixel compounds are similar to 2D compounds. The frusta of the source rendering
units are modified so that each unit renders an evenly distributed subset of pixels,
as shown in Figure 710

As 2D compounds, pixels compounds have low, constant IO requirements for the
pixel transfers during recomposition.
103D model courtesy of AVS, USA.
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channel "buffer1"
pixel [ 0 3 ]

outputframe "frame1"

channel "buffer2"
pixel [ 2 3 ]

outputframe "frame3"

channel "buffer1"
pixel [ 1 3 ]

outputframe "frame3"

channel "destination"
wall { ... }

inputframe "frame1"
inputframe "frame2"
inputframe "frame3"

Figure 7: A pixel compound

OpenGL functionality in-
fluenced by the raster posi-
tion will not work correctly
with pixel compounds, or
needs at least special atten-
tion. Among them are: lines,
points, sprites, glDrawPixels,
glBitmap, glPolygonStipple.
The application can query the
current pixel parameters at
runtime to adjust the render-
ing accordingly.

Pixel compounds work well
for purely fill-limited applica-
tions. Techniques like frus-
tum culling do not reduce the
rendered data for the source
rendering resources. Pixel compounds are ideal for ray-tracing, which is highly
fill-limited and needs the full database for rendering anyway. Volume rendering
applications are also well suited for this mode, and should choose it over 2D com-
pounds.

kernel width
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Figure 8: Pixel compound kernel

Pixel compounds in Equalizer are configured
using the pixel parameter, using the values [ x
y width height] to configure the size and offset
of the sampling kernel. The width and height
of the sampling kernel define how many pixels
are skipped in the x and y direction, respec-
tively. The x and y offset define the index of the
source channel within the kernel. They have to
be smaller than the size of the kernel. Figure 8
illustrates these parameters, and Figure 9 shows
some example kernels for a four-to-one pixel de-
composition.

The destination channel can also be used as
a source channel. Contrary to the other com-
pound modes, it also has to use an output and
corresponding input frame. During rendering, the
frustum is ’squeezed’ to configure the pixel decomposition. The destination channel
can therefore not be rendered in place, like with the other compound modes.

Pixel [0 0 2 2]

Pixel [1 0 2 2]

Pixel [0 1 2 2]

Pixel [1 1 2 2]

Pixel [0 0 4 1]

Pixel [1 0 4 1]

Pixel [2 0 4 1]

Pixel [3 0 4 1]

Pixel [0 0 1 4]

Pixel [0 1 1 4]

Pixel [0 2 1 4]

Pixel [0 3 1 4]

Pixel [0 0 2 2]

Pixel [1 0 2 2]

Pixel [0 1 1 4]

Pixel [0 3 1 4]

Figure 9: Example pixel kernels for a four-to-one pixel compound
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2.6. Automatic Runtime Adjustments

Some scalable rendering parameters are updated at runtime to provide optimal
performance or influence other scalable rendering features. These adjustments are
often referred to as load-balancing, but are called equalizers, since their functionality
is not limited to load-balancing in Equalizer.

The server provides a number of equalizers, which automatically update certain
parameters of compounds based on runtime information. They balance the load of
2D and DB compounds, optimally distribute render resources for segment projec-
tions systems, adjust the resolution to provide a constant framerate or zoom images
to allow monitoring of another view.

Equalizers are described in more detail in Section 3.10.9.

3. Writing Configurations

3.1. Preparation

Before writing a configuration, it is useful to assemble the following information:

A list of all computers in your rendering cluster, including the IP addresses
of all network interfaces to be used.

The number of graphics cards in each computer.

The physical dimensions of the display system, if applicable. These are typ-
ically the bottom-left, bottom-right and top-left corner points of each display
surface in meters.

The relative coordinates of all the segments belonging to each display surface,
and the graphics card output used for each segment. For homogenous setups,
it is often enough to know the number of rows and columns on each surface,
as well as the overlap or underlap percentage, if applicable.

The number of desired application windows. Application windows are typ-
ically destination windows for scalable rendering or ’control’ windows paired
with a view on a display system.

Characteristics of the application, e.g., supported scalability modes and
features.

3.2. Overview

Equalizer applications are configured at runtime by the Equalizer server. The server
loads its configuration from a text file, which is a one-to-one representation of the
configuration data structures at runtime.

For an extensive documentation of the file format please refer to Appendix A.
This section gives an introduction on how to write configuration files.

A configuration consists of the declaration of the rendering resources and the
usage description for these resources. It can optionally contain the description of
the physical layout of the projection system and logical layouts on the projection
canvases.

The rendering resources are represented in a hierarchical tree structure which cor-
responds to the physical and logical resources found in a 3D rendering environment:
nodes (computers), pipes (graphics cards), windows, channels.
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3. Writing Configurations

The resource usage is configured using a compound tree, which is a hierarchi-
cal representation of the rendering decomposition and recomposition across the
resources. It is explained in Section 3.10.

Physical layouts of display systems are configured using canvases with segments,
which represent 2D rendering areas composed of multiplex displays or projectors.
Logical layouts are applied to canvases and define views on a canvas.

Resource UsageConfigResources

compound
eye [ LEFT RIGHT ]

channel "left"
wall { ... }
swapbarrier{}

channel "front"
wall { ... }
swapbarrier{}

channel "floor"
wall { ... }
swapbarrier{}

channel "right"
wall { ... }
swapbarrier{}Channel

name "left"
viewport {...}

Window
viewport {...}

Pipe

Node Node

Window
viewport {...}

Pipe

Channel
name "floor"

Window
viewport {...}

Pipe

Channel
name "front"

Channel
name "right"
viewport {...}

Figure 10: An example configuration

Figure 10 shows an example configuration for a four-side CAVE, running on two
machines (nodes) using three graphics cards (pipes) with one window each to render
to the four output channels connected to the projectors for each of the walls. The
compound description is only used by the server to compute the rendering tasks.
The application is not aware of compounds, and does not need to concern itself
with the parallel rendering logics of a configuration.

For testing and development purposes it is possible to use multiple instances
for one resource, e.g. to run multiple render client nodes on one computer. For
optimal performance during deployment, one node and pipe should be used for
each computer and graphics card, respectively.

8



3. Writing Configurations

3.3. Node

For each machine in your cluster, create one node. Create one appNode if your
application process should also render, which is often the case. List all nodes, even
if you are not planning to use them at first. Equalizer will only instantiate and
access used nodes, that is, nodes which are referenced by an active compound.

In each node, list all connections through which this node is reachable. Typically
a node uses only one connection, but it is possible to configure multiple connections
if the machine and cluster is set up to use multiple, independent network interfaces.
Make sure the configured hostname is reachable from all nodes. An IP address may
be used as the hostname.

The eq::Node class is the representation of a single computer in a cluster. One
operating system process of the render client will be used for each node. Each
configuration might also use an application node, in which case the application
process is also used for rendering. All node-specific task methods are executed from
the main application thread.

3.4. Pipe

For each node, create on pipe for each graphics card in the machine. Set the device
number to the correct index. On operating systems using X11, e.g., Linux, also set
the port number if your X-Server is running on a nonstandard port.

The eq::Pipe class is the abstraction of a graphics card (GPU). In the current
implementation it is also one operating system thread. Non-threaded pipes are
supported for integrating with thread-unsafe libraries, but have various performance
caveats. They should only be used if using a different, synchronized rendering thread
is not an option.

All pipe, window and channel task methods are executed from the pipe thread,
or in the case of non-threaded pipes from the main application thread11.

Further versions of Equalizer might introduce threaded windows, where all window-
related task methods are executed in a separate operating system thread.

3.5. Window

Configure one window for each desired application window on the appNode. Con-
figure one full-screen window for each display segment. Configure one off-screen
window, typically a pbuffer, for each graphics card used as a source for scalable
rendering. Provide a useful name to each on-screen window if you want to easily
identify it at runtime.

Sometimes display segments cover only a part of the graphics card output. In this
case it is advised to configure a non-fullscreen window without window decorations,
using the correct window viewport.

The eq::Window class encapsulates a drawable and an OpenGL context. The
drawable can be an on-screen window or an off-screen PBuffer or FrameBuffer
Object (FBO). The window uses an eq::OSWindow, which abstracts and manages
window-system-specific handles to the drawable and context, e.g., an X11 window
XID and GLXContext for the glX window system.

3.6. Channel

Configure one channel for each desired rendering area in each window. Typically
one full-screen channel per window is used. Name the channel using a unique, easily
identifiable name, e.g., ’source-1’, ’control-2’ or ’segment-2 3’.

11see http://www.equalizergraphics.com/documents/design/nonthreaded.html
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Multiple channels in application windows may be used to view the model from
different viewports.

Sometimes, a single window is split across multiple projectors, e.g., by using an
external splitter such as the Matrox TripleHead2Go. In this case configure one
channel for each segment, using the channel’s viewport to configure its position
relative to the window.

The eq::Channel class is the abstraction of an OpenGL viewport within its parent
window. It is the entity executing the actual rendering. The channel’s viewport is
overwritten when it is rendering for another channel during scalable rendering.

3.7. Canvases

If you are writing a configuration for workstation usage you can skip the following
sections and restart with Section 3.10.

Configure one canvas for each display surface. For planar surfaces, e.g., a display
wall, configure a frustum. For non-planar surfaces, the frustum will be configured
on each display segment.

The frustum can be specified as a wall or projection description. Take care to
choose your reference system for describing the frustum to be the same system as
used by the head-tracking matrix calculated by the application.

A wall is completely defined by the bottom-left, bottom-right and top-left coor-
dinates relative to the origin.

A projection is defined by the position and head-pitch-roll orientation of the
projector, as well as the horizontal and vertical field-of-view and distance of the
projection wall.
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Figure 11: Wall and projection parameters

Figure 11 illustrates the
wall and projection frustum
parameters.

Canvases provide a conve-
nient way to configure projec-
tion surfaces. A canvas uses
layouts, which describe logi-
cal views. The usage of can-
vases and layouts is optional.
Typically, each desktop win-
dow uses one canvas.

A canvas represents one
logical projection surface, e.g.,
a PowerWall, a curved screen
or an immersive installa-
tion. One configuration
might drive multiple can-
vases, for example an immer-
sive installation and an operator station.

A canvas consists of one or more segments. A planar canvas typically has a frus-
tum description (see Section 3.10.3), which is inherited by the segments. Non-planar
frusta are configured using the segment frusta. These frusta typically describe a
physically correct display setup for Virtual Reality installations.

A canvas has one or more layouts. One of the layouts is the active layout, that
is, this set of views is currently used for rendering. It is possible to specify OFF
as a layout, which deactivates the canvas. It is possible to use the same layout on
different canvases.
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3.7.1. Segments

Configure one segment for each display or projector of each canvas. Configure the
viewport of the segment to match the area covered by the segment on the physical
canvas. Set the output channel to the resource driving the described projector.

Figure 12: A canvas using four,
non-consecutive segments

For non-planar displays, configure the frustum
as described in Section 3.7. For passive stereo
installations, configure one segment per eye pass,
where the segment for the left and right eye have
the same viewport.

A segment represents one output channel of the
canvas, e.g., a projector or an LCD. A segment
has an output channel, which references the chan-
nel to which the display device is connected.

A segment covers a part of its parent canvas,
which is configured using the segment viewport.
The viewport is in normalized coordinates with
respect to the canvas. Segments might overlap
(edge-blended projectors) or have gaps between
each other (display walls, Figure 1212). The viewport is used to configure the
segment’s default frustum from the canvas frustum description, and to place layout
views correctly.

3.8. Layouts

Configure one layout for each configuration of logical views. Name the layout using
a unique name. Often only one layout with a one view is used for all canvases.

Figure 13: A layout with four
views

Enable the layout on each desired canvas by
adding it to the canvas. Since canvases refer-
ence layouts by name or index, layouts have to
be configured before their respective canvases in
the configuration file.

A layout is the grouping of logical views. It is
used by one or more canvases. For all given lay-
out/canvas combinations, Equalizer creates des-
tination channels when the configuration file is
loaded. These destination channels can be refer-
enced by compounds to configure scalable render-
ing.

Layouts can be switched at runtime by the ap-
plication. Switching a layout will activate differ-
ent destination channels for rendering.

3.8.1. Views

Configure one view for each logical view in each layout. Set the viewport to position
the view.

A view is a logical view of the application data, in the sense used by the Model-
View-Controller pattern. It can be a scene, viewing mode, viewing position, or any
other representation of the application’s data.

A view has a fractional viewport relative to its layout. A layout is often fully
covered by its views, but this is not a requirement.

12Dataset courtesy of VolVis distribution of SUNY Stony Brook, NY, USA.
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Figure 14: A display wall using a six-segment canvas with a two-view layout

Each view can have a frustum description. The view’s frustum overrides frusta
specified at the canvas or segment level. This is typically used for non-physically
correct rendering, e.g., to compare two models side-by-side on a canvas. If the view
does not specify a frustum, it will use the sub-frustum resulting from the covered
area on the canvas.

A view might have an observer, in which case its frustum is tracked by this
observer.

3.9. Observers

Unless you have multiple tracked persons, or want to disable tracking on certain
views, you can skip this section.

Configure one observer for each tracked person in the configuration. Most config-
urations have at most one observer. Assign the observer to all views which belong
to this observer. Since the observer is referenced by its name or index, it has to be
specified before the layout in the configuration file.

Views with no observer are not tracked. The config file loader will create one
default observer and assign it to all views if the configuration has no observer.

An observer represents an actor looking at multiple views. It has a head matrix,
defining its position and orientation within the world, and an eye separation. Typ-
ically, a configuration has one observer. Configurations with multiple observers are
used if multiple, head-tracked users are in the same configuration session, e.g., a
non-tracked control host with two tracked head-mounted displays.

3.10. Compounds

Compound trees are used to describe how the rendering resources are combined to
produce the desired output, and how they are aggregated to increase the perfor-
mance.

It is advised to study and understand the basic configuration files shipped with
the Equalizer configuration, before attempting to write compound configurations.
The command line program configTool, shipped with the Equalizer distribution,
creates some standard configurations automatically.
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For configurations using canvases and layouts without scalability, the configura-
tion file loader will create the appropriate compounds. It is typically not necessary
to write compounds for this use case.

The following subsection outlines the basic approach to writing compounds. The
remaining subsections provide an in-depth explanation of the compound structure
to give the necessary background for compound configuration.

3.10.1. Writing Compounds

The following steps are typically taken when writing compound configurations:

Root compound Define an empty top-level compound when synchronizing multi-
ple destination views. Multiple destination views are used for multi-display
systems, e.g., a PowerWall or CAVE. All windows used for one display surface
should be swap-locked (see below) to provide a seamless image. A single des-
tination view is typically used for providing scalability to a single workstation
window.

Destination compound(s) Define one compound for each destination channel, ei-
ther as a child of the empty group, or as a top-level compound.

Standalone channels Set the channel by using the channel name from the
resource section. Define a frustum as explained in Section 3.7.

View/Segment channels Set the channel by using the canvas, segment, lay-
out and view name. The compound frustum will be calculated automati-
cally based on the segment or view frustum. Note that one segment may
created multiple view/segment channels, one for each view intersection
of each layout used on the canvas. Only the compounds belonging to the
active layout of a canvas are activate at runtime.
Software swap lock When using software swap synchronization, swap-

lock the destination compounds using a swapbarrier. All windows
with a swapbarrier of the same name synchronize their swapbuffers.

Hardware swap lock When using hardware swap synchronization, use
swapbarriers for the destination compounds, setting NV group and
NV barrier appropriately. The swap barrier name is ignored in this
case. All windows of the same group on a single node synchronize
their swap buffer. All groups of the same barrier synchronize their
swap buffer across nodes. Please note that the driver typically limits
the number of groups and barriers to one, and that multiple windows
per swap group are not supported by all drivers. Please refer to your
OpenGL driver documentation for details.

Scalability If desired, define scalability for each of your destination compounds.
Add one compound using a source channel for each contributor to the render-
ing. The destination channel may also be used as a source.

Decomposition On each child compound, limit the rendering task of that
child by setting the viewport, range, period and phase, pixel, eye or zoom
as desired.

Runtime Adjustments A load equalizer may be used on the destination com-
pounds to set the viewport or range of all children each frame, based
on the current load. A view equalizer may be used on the root com-
pound to assign resources to all destination compounds, which have to
use load equalizers. A framerate equalizer should be used to smoothen the
framerate of DPlex compounds. A DFR equalizer may be used to set the

13



3. Writing Configurations

zoom of a compound to achieve a constant framerate. One compound
may have multiple equalizers, e.g., a load equalizer and a DFR equalizer
for a 2D compound with a constant framerate.

Recomposition For each source compound, define an output frame to read
back the result. Use this output frame as an input frame on the desti-
nation compound. The frames are connected with each other by their
name, which has to be unique within the root compound tree. For paral-
lel compositing, describe your algorithm by defining multiple input and
output frames across all source compounds.

3.10.2. Compound Channels

Each compound has a channel, which is used by the compound to execute the
rendering tasks. One channel might be used by multiple compounds. Unused
channels, windows, pipes and nodes are not instantiated during config initialization.
The rendering tasks for the channels are computed by the server and send to the
appropriate render client nodes at the beginning of each frame.

3.10.3. Frustum

Compounds have a frustum description to define the physical layout of the display
environment. The frustum specification is described in Section 3.7.

The frustum description is inherited by the children, therefore the frustum is
typically defined on the topmost compound.

3.10.4. Compound Classification

The channels of the leaf compounds in the compound tree are designated as source
channels. The topmost channel in the tree is the destination channel. One com-
pound tree might have multiple destination channels, e.g., for a swap-synchronized
immersive installation.

All channels in a compound tree work for the destination channel. The destina-
tion channel defines the 2D pixel viewport rendered by all leaf compounds. The
destination channel and pixel viewport cannot be overridden by child compounds.

3.10.5. Tasks

Compounds execute a number of tasks: clear, draw, assemble and readback. By
default, a leaf compound executes all tasks and a non-leaf compound assemble and
readback. A non-leaf compound never executes the draw task.

A compound can be configured to execute a specific set of tasks, for example to
configure the multiple steps used by binary-swap compositing.

3.10.6. Decomposition - Attributes

Compounds have attributes which configure the decomposition of the destination
channel’s rendering, which is defined by the viewport, frustum and database. A
viewport decomposes the destination channel and frustum in screen space. A range
tells the application to render a part of its database, and an eye rendering pass
can selectively render different stereo passes. A pixel parameter adjusts the frustum
so that the source channel renders an even subset of the parent’s pixels. Setting
one or multiple attributes causes the parent’s view to be decomposed accordingly.
Attributes are cumulative, that is, intermediate compound attributes affect and
therefore decompose the rendering of all their children.
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3.10.7. Recomposition - Frames

Compounds use output and input frames to configure the recomposition of the
resulting pixel data from the source channels. An output frame connects to an input
frame of the same name. The selected frame buffer data is transported from the
output channel to the input channel. The assembly routine of the input channel will
block on the availability of the output frame. This composition process is extensively
described in Section 7.7. Frame names are only valid within the compound tree,
that is, an output frame from one compound tree cannot be used as an input frame
of another compound tree.

3.10.8. Synchronization - Swapbarriers

Compounds may have a software or hardware swapbarrier to synchronize the buffer
swap of multiple channels. A software swapbarrier is configured by giving it a name.
Windows with a swapbarrier of the same name synchronize with each other before
executing the swap buffer task. Before entering the barrier, Window::finish is called
to ensure that all OpenGL commands have been executed.

Note that a software swap barrier is not accurate enough for edge-blended projec-
tion system or immersive installations. Such installations typically use a hardware
synchronization, e.g., nVidia G-Sync cards. It is however sufficient for display walls
made out of LCD’s and for some non-immersive projection systems.

Swapbarrier names are only valid within the compound tree, that is, a compound
from one compound tree cannot be synchronized with a compound from another
compound tree.

A hardware swapbarrier is configured by setting the NV group and NV barrier
parameters. These parameters follow the NV swap group extension, which synchro-
nizes all windows bound to the same group on a single machine, and all groups
bound to the same barrier across systems.

3.10.9. Adjustments - Equalizers

Equalizers are used to update compound parameters based on runtime data. They
are attached to a compound (sub-)tree, on which they operate. The Equalizer
distribution contains numerous example configuration files using equalizers.

Figure 15: 2D load-balancing

Load Equalizer While pixel and stereo com-
pounds are naturally load-balanced, 2D and DB
compounds often need load-balancing for optimal
rendering performance. Using a load equalizer is
transparent to the application, and can be used
on any application for 2D, and on most applica-
tions for DB load-balancing. Some applications
do not support dynamic updates of the database
range, and therefore cannot be used with DB
load-balancing.

Using a 2D or DB load-balancer will adjust
the 2D split or database range automatically each
frame. The 2D load-balancer exists in three fla-
vors: 2D using tiles, VERTICAL using columns
and HORIZONTAL using rows.

2D load-balancing increases the framerate over
a static decomposition in virtually all cases. It
works best if the application data is relatively uni-
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formly distributed in screen-space. A damping parameter can be used to fine-tune
the algorithm.

DB load-balancing is beneficial for applications which cannot precisely predict the
load for their scene data, e.g., when the data is nonuniform. Volume rendering is a
counterexample, where the data is uniform and a static DB decomposition typically
results in a better performance.

View Equalizer Depending on the model position and data structure, each seg-
ment of a multi-display system has a different rendering load. The segment with
the biggest load determines the overall performance when using a static assignment
of resources to segments. The view equalizer analyzes the load of all segments, and
adjusts the resource usage each frame. It equalizes the load on all segments of a
view.

Figure 1613 illustrates this process. On the left side, a static assignment of re-
sources to display segments is used. The right-hand segment has a higher load than
the left-hand segment, causing sub-optimal performance. The configuration on the
left uses a view equalizer, which assigns two GPU’s to the left segment and four
GPU’s to the right segment, which leads to optimal performance for this model and
camera position.

Figure 16: Cross-segment load-balancing for two seg-
ments using eight GPU’s

The view equalizer can also
use resources from another
display resource, if this re-
source has little rendering
load by itself. It is there-
fore possible to improve the
rendering performance of a
multi-display system with-
out any additional resources.
This is particularly useful for
installations with a higher
number of displays where the
rendering load is typically in
a few segments only, e.g., for a CAVE.

Figure 17: Cross-segment load-
balancing for a CAVE

Figure 17 shows cross-usage for a five-sided
CAVE driven by five GPU’s. The front and left
segments show the model and have a significant
rendering load. The view equalizer assigns the
GPU’s from the top, bottom and right wall for
rendering the left and front wall in this configu-
ration.

Cross-segment load-balancing is configured hi-
erarchically. On the top compound level, a view
equalizer assigns resources to each of its children,
so that the optimal number of resources is used
for each segment. On the next level, a load equal-
izer on each child computes the resource distri-
bution within the segment, taking the resource
usage given by the view equalizer into account.

Framerate Equalizer Certain configurations, in
particular DPlex compounds, require a smooth-

ing of the framerate at the destination channel, otherwise the framerate will become

13Image Copyright Realtime Technology AG, 2008
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periodically faster and slower. Using a framerate equalizer will smoothen the swap
buffer rate on the destination window for optimal user experience.

DFR Equalizer Dynamic Frame Resolution (DFR) trades rendering performance
for visual quality. The rendering for a channel is done at a different resolution than
the native channel resolution to keep the framerate constant. The DFR equalizer
adjusts the zoom of a channel, based on the target and current framerate. It is
typically used for fill-rate bound applications, such as volume rendering and ray-
tracing.

10 FPS3 FPS

Figure 18: Dynamic Frame Resolution

Figure 1814 shows DFR for
volume rendering. To achieve
10 frames per second, the
model is rendered at a lower
resolution, and upscaled to
the native resolution for dis-
play. The rendering qual-
ity is slightly degraded, while
the rendering performance re-
mains interactive. When the
application is idle, it renders
a full-resolution view.

The dynamic frame resolu-
tion is not limited to down-
scaling the rendering resolution, it will also upscale the resolution if the parameters
allow for it. Upscaled rendering, which will down-sample the result for display,
provides dynamic anti-aliasing at a constant framerate.

Monitor Equalizer The monitor equalizer allows the observation of another view,
potentially made of multiple segments, in a different channel at a different resolution.
This is typically used to reuse the rendering of a large-scale display on an operator
station.

Figure 19: Monitoring a projection wall

A monitor equalizer ad-
justs the frame zoom of the
output frames used to observe
the rendering, depending on
the destination channel size.
The output frames are down-
scaled on the GPU before
readback, which results in op-
timal performance.

Figure 19 shows a usage of
the monitor equalizer. A two-
segment display wall is driven
by a separate control station.
The rendering happens only
on the display wall, and the
control window receives the correctly downscaled version of the rendering.

14Data set courtesy of Olaf Ronneberger, Computer Science Institute, University of Freiburg,
Germany
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Part II.

Programming Guide
To modify an application for Equalizer, the programmer structures the source code
so that the OpenGL rendering can be executed in parallel, potentially using multiple
processes for cluster-based execution.

4. Hello, World!

Figure 20: Hello, World!

The eqHello example is a
minimal application to il-
lustrate the basic princi-
ple of an Equalizer appli-
cation: The application de-
veloper has to implement
the rendering method Chan-
nel::frameDraw, similar to the
glutDisplayFunc in GLUT ap-
plications. It can be run as a
stand-alone application from
the command line.

The eqHello redraw func-
tion renders six colored quads,
rotating around the origin.
The frameDraw method pro-
vided by the eq::Channel can
be used as a convenience function to setup the frustum and other OpenGL state.
After setting up some lighting parameters, eqHello rotates the scene and renders
the quads using immediate mode:
void Channel : : frameDraw ( const u in t 32 t sp in )
{

// se tup OpenGL Sta te
eq : : Channel : : frameDraw ( sp in ) ;

const f loat l i gh tPos [ ] = { 0 .0 f , 0 . 0 f , 1 . 0 f , 0 . 0 f } ;
g l L i gh t f v ( GL LIGHT0 , GL POSITION, l i gh tPos ) ;

const f loat l ightAmbient [ ] = { 0 .2 f , 0 . 2 f , 0 . 2 f , 1 . 0 f } ;
g l L i gh t f v ( GL LIGHT0 , GL AMBIENT, l ightAmbient ) ;

// ro t a t e scene around the o r i g i n
g lRota t e f ( static cast< f loat >( sp in ) 0 . 5 f , 1 . 0 f , 0 . 5 f , 0 .25 f ) ;

// render s i x axis−a l i gned co lored quads around the o r i g i n
[ . . . ]

}

The eqHello main function sets up the communication with the server, initializes
and drives the rendering. The details of this setup are explained in Section 6.

5. The Programming Interface

Equalizer uses a C++ programming interface. The API is minimally invasive, so
Equalizer imposes only a minimal, natural execution framework upon the applica-

18



5. The Programming Interface

tion. It does not provide a scene graph, or interferes in any other way with the
application’s rendering code. The restructuring work enforced by Equalizer is the
minimal refactoring needed to parallelize the application for rendering.

Methods called by the application have the form verb[Noun], whereas methods
called by Equalizer (‘Task Methods’) have the form nounVerb. For example, the
application calls Config::startFrame to render a new frame, which causes, among
many other things, Node::frameStart to be called in all active render clients.

5.1. Namespaces

Application developers are exposed to the following namespaces:

eq::base The eq::base namespace provides C++ classes to abstract the underlying
operating system and implements common helper functionality. One example
is the eq::base::Clock class providing a high-resolution timer. Classes in this
namespace are fully documented in the API documentation on the Equalizer
website, and are not subject of this Programming Guide.

eq::net The Equalizer network layer provides basic functionality for network com-
munication, such as Connection and ConnectionSet, as well as higher-level func-
tionality such as Node, Session and Object. Please refer to Section 8 for an
introduction into the network layer, and to Section 6.3 for distributed objects.

eq The core namespace for the Equalizer client library. The classes and their re-
lationship in this namespace closely model the configuration file format. The
classes in the eq namespace are the main subject of this Programming Guide.

eqPly

eqPly

eqServer

eq::server
eq

eq::net
eq::base

Figure 21: Namespace layering
for eqPly and eqServer

Examples shipped with Equalizer are imple-
mented in their own namespaces, e.g., eqPly or
eVolve. They rely mostly on subclassing classes
from the eq namespace, with the occasional us-
age of functionality from the eq::net and eq::base
namespace.

The functionality of the Equalizer server is
implemented in the eq::server namespace. This
namespace does not yet expose an API intended
to be used by developers.

Figure 21 shows the namespace layering for eq-
Ply and eqServer.

5.2. Task Methods

The application inherits from Equalizer classes and overrides virtual functions to im-
plement certain functionality, e.g., the application’s OpenGL rendering in eq::Chan-
nel::frameDraw. These task methods are similar in concept to C function callbacks.
Section 6 will discuss the important task methods. A full list can be found on the
website15.

5.3. Execution Model and Thread Safety

Using threading correctly in OpenGL-based applications is easy with Equalizer.
Equalizer creates one rendering thread for each graphics card. All task methods
for a pipe, and therefore all OpenGL commands, are executed from this thread.
This threading model is the OpenGL ‘threading model’, which maintains a current
15see http://www.equalizergraphics.com/documents/design/taskMethods.html
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context for each thread. If structured correctly, the application rarely has to take
care of thread synchronization or protection of shared data.

Application

init send tasks

trigger new 
frame

wait for frame 
finish

handle events

update 
database

exit

Server Render Clients

init

send
render tasks

execute
render tasks

sync frame 
finish

send tasks exit

idle 
processing

Figure 22: Simplified execution model

The main thread is respon-
sible for maintaining the ap-
plication logic. It reacts
on user events, updates the
data model and requests new
frames to be rendered. It
drives the whole application,
as shown in Figure 22.

The rendering threads con-
currently render the applica-
tion’s database. The data-
base should be accessed in
a read-only fashion during
rendering to avoid threading
problems. This is normally
the case, for example all mod-
ern scene graphs use read-
only render traversals.

All rendering threads in
the configuration run asyn-
chronously to the application’s main thread. Depending on the configuration’s
latency, they can fall n frames behind the last frame finished by the application
thread. A latency of one frame is usually not perceived by the user, but can in-
crease rendering performance substantially since operations are pipelined better.

Rendering threads on a single node are synchronized when using the default
thread model draw sync. When a frame is finished, all local rendering threads are
done drawing. Therefore the application can safely modify the data between the
end of a frame and the beginning of a new frame. Furthermore, only one instance
of the scene data has to be maintained within a process, since all rendering threads
are guaranteed to draw the same frame.

This per-node frame synchronization does not inhibit latency across rendering
nodes. Furthermore, advanced rendering software which multi-buffers the dynamic
parts of the database can disable the per-node frame synchronization, as explained
in Section 7.2.2. Some scene graphs implement multi-buffered data, and can profit
from relaxing the frame synchronization.

6. The eqPly polygonal renderer

In this section the source code of eqPly is explained in detail, and relevant design
decisions, caveats and other remarks are discussed.

eqPly is a parallel renderer for polygonal data in the ply file format. It supports
all relevant Equalizer features, and can be used to render on large-scale displays,
immersive environments with head tracking and to render massive data sets using
all scalable rendering features of Equalizer.

The eqPly example is shipped with the Equalizer distribution and serves as a ref-
erence implementation of an Equalizer-based application of medium complexity. It
focuses on the example usage of core Equalizer features, not on advanced rendering
features or visual quality.

All classes in the example are in the eqPly namespace to avoid type name ambi-
guities, in particular for the Window class which is frequently used as a type in the
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Figure 23: UML diagram eqPly and relevant Equalizer classes

global namespace by windowing systems. Figure 23 shows how the most important
Equalizer classes are used through inheritance by the eqPly example.

The eqPly classes fall into two categories: Subclasses of the rendering entities
introduced in Section 3, and classes for distributing data. The function and typical
usage for each of the rendering entities is discussed in this section.

The distributed data classes are helper classes based on eq::Object or its parent
class eq::net::Object. They illustrate the typical usage of distributed objects for
static as well as dynamic, frame-specific data. Furthermore they are used for a
basic scene graph distribution of the model data.

6.1. The main Function

The main function starts off with parsing the command line into the LocalInitData
data structure. A part of it, the base class InitData, will be distributed to all render
client nodes. The command line parsing is done by the LocalInitData class, which
is discussed in Section 6.3.3:
int main ( int argc , char argv )
{

// 1 . parse arguments
eqPly : : Loca l In i tData in i tData ;
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i n i tData . parseArguments ( argc , argv ) ;

The second step is to redirect all Equalizer output to a file if this was requested
through the command line. This should happen before initializing Equalizer, so
that output during initialization is redirected and threads launched by Equalizer
will use the given log stream. Any std::ostream can be used as log output:

// 2 . Redirec t l o g output to f i l e , i f r eques t ed
std : : o f s tream l o gF i l e = 0 ;
const std : : s t r i n g& logFi lename = in i tData . getLogFilename ( ) ;
i f ( ! logFi lename . empty ( ) )
{

l o gF i l e = new ofstream ( logFi lename . c s t r ( ) ) ;
eq : : base : : Log : : setOutput ( l o gF i l e ) ;

}

The third step is to initialize the Equalizer library. The initialization function of
Equalizer also parses the command line, which is used to set certain default values
based on Equalizer-specific options16, e.g., the default server address. Furthermore,
a NodeFactory is provided. The EQERROR macro, and its counterparts EQWARN,
EQINFO and EQVERB allow selective debugging outputs with various logging levels:

// 2 . Equa l i z e r i n i t i a l i z a t i o n
NodeFactory nodeFactory ;
i f ( ! eq : : i n i t ( argc , argv , &nodeFactory ) )
{

EQERROR << ” Equa l i z e r i n i t f a i l e d ” << endl ;
return EXIT FAILURE;

}

The node factory is used by Equalizer to create the object instances of the config-
ured rendering entities. Each of the classes inherits from the same type provided by
Equalizer in the eq namespace. The provided eq::NodeFactory base class instantiates
’plain’ Equalizer objects, thus making it possible to selectively subclass individual
entity types, as it is done by eqHello. For each rendering resources used in the
configuration, one C++ object will be created during initialization. Config, node
and pipe objects are created and destroyed in the node thread, whereas window
and channel objects are created and destroyed in the pipe thread:
class NodeFactory : public eq : : NodeFactory
{
public :

virtual eq : : Conf ig c r ea t eCon f i g ( eq : : ServerPtr parent )
{ return new eqPly : : Conf ig ( parent ) ; }

virtual eq : : Node createNode ( eq : : Conf ig parent )
{ return new eqPly : : Node ( parent ) ; }

virtual eq : : Pipe c r ea t eP ipe ( eq : : Node parent )
{ return new eqPly : : Pipe ( parent ) ; }

virtual eq : : Window createWindow ( eq : : Pipe parent )
{ return new eqPly : : Window( parent ) ; }

virtual eq : : Channel createChannel ( eq : : Window parent )
{ return new eqPly : : Channel ( parent ) ; }

virtual eq : : View createView ( ) { return new eqPly : : View ( ) ; }
} ;

The fourth step is to create an instance of the application and to initialize it
locally. The application is a subclass of eq::Client, which in turn is an eq::net::Node.
The underlying Equalizer network layer, discussed in Section 8, is a peer-to-peer
network of eq::net::Nodes. The client/server concept is implement the higher-level
eq client namespace.

The local initialization of a node creates at least one local listening socket, which
allows the eq::Client to communicate over the network with other nodes, such as the

16Equalizer-specific options always start with - -eq-
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server and the rendering clients. The listening socket(s) can be configured using
the –eq-listen command line parameter, or by programmatically adding connection
descriptions to the client before the local initialization.

// 4 . i n i t i a l i z a t i o n o f l o c a l c l i e n t node
RefPtr< eqPly : : App l i ca t ion > c l i e n t = new eqPly : : App l i ca t ion ( in i tData ) ;
i f ( ! c l i e n t−>i n i t L o c a l ( argc , argv ) )
{

EQERROR << ”Can ’ t i n i t c l i e n t ” << endl ;
eq : : e x i t ( ) ;
return EXIT FAILURE;

}

Finally everything is set up, and the eqPly application is executed:
// 5 . run c l i e n t
const int r e t = c l i e n t−>run ( ) ;

After the application has finished, it is de-initialized and the main function re-
turns:

// 6 . c leanup and e x i t
c l i e n t−>ex i tLo ca l ( ) ;
c l i e n t = 0 ;

eq : : e x i t ( ) ;

i f ( l o gF i l e )
l o gF i l e−>c l o s e ( ) ;

delete l o gF i l e ;

return r e t ;
}

6.2. Application

In the case of eqPly, the application is also the render client. The eqPly executable
has three runtime behaviors:

1. Application: The executable started by the user, the controlling entity of
the rendering session.

2. Auto-launched render client: The typical render client, started by the
server. The server starts the executable with special parameters, which cause
Client::initLocal to never return. During exit, the server terminates the process.
By default, the server starts the render client using ssh. The launch command
can be used to configure another program to auto-launch render clients.

3. Resident render client: Manually pre-started render client, listening on a
specified port for server commands. This mode is selected using the command-
line option –eq-client and –eq-listen <address> to specify a well-defined lis-
tening address, and potentially -r to keep the client running across multiple
runs17.

6.2.1. Main Loop

The application’s main loop starts by connecting the application to an Equalizer
server. The command line parameter –eq-server explicitly specifies a server address.
If no server was specified, Client::connectServer tries first to connect to a server on

17see http://www.equalizergraphics.com/documents/design/residentNodes.html
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the local machine using the default port. If that fails, it will create a server running
within the application process with a default one-channel configuration18.

Another configuration can be selected using the command-line parameter –eq-
config. This configuration may only contain an appNode, i.e., no distributed config-
uration is possibly since the process-local server does not create a listening socket.
int Appl i ca t ion : : run ( )
{

// 1 . connect to s e rve r
eq : : ServerPtr s e r v e r = new eq : : Server ;
i f ( ! connectServer ( s e r v e r ) )
{

EQERROR << ”Can ’ t open s e r v e r ” << endl ;
return EXIT FAILURE;

}

The second step is to ask the server for a configuration. The ConfigParams are
a placeholder for later Equalizer implementations to provide additional hints and
information to the server for choosing the configuration. The configuration chosen
by the server is created locally using NodeFactory::createConfig. Therefore it is of
type eqPly::Config, but the return value is eq::Config, making the cast necessary:

// 2 . choose con f i g
eq : : ConfigParams configParams ;
Conf ig c on f i g = static cast<Config >( s e rver−>chooseConf ig ( configParams ) ) ;

i f ( ! c on f i g )
{

EQERROR << ”No matching c on f i g on s e r v e r ” << endl ;
d i s connec tSe rve r ( s e r v e r ) ;
return EXIT FAILURE;

}

Finally it is time to initialize the configuration. For statistics, the time for this
operation is measured and printed. During initialization the server launches and
connects all render client nodes, and calls the appropriate initialization task meth-
ods, as explained in later sections. Config::init returns after all nodes, pipes, windows
and channels are initialized. It returns true only if all initialization task methods
were successful.

The EQLOG macro allows topic-specific logging. The numeric topic values are
specified in the respective log.h header files, and logging for various topics is enabled
using the environment variable EQ LOG TOPICS:

// 3 . i n i t con f i g
eq : : base : : Clock c l o ck ;

con f i g−>s e t In i tData ( i n i tDa ta ) ;
i f ( ! con f i g−> i n i t ( ) )
{

EQERROR << ”Config i n i t i a l i z a t i o n f a i l e d : ”
<< con f i g−>getErrorMessage ( ) << endl ;

s e rve r−>r e l e a s eCon f i g ( c on f i g ) ;
d i s connec tSe rve r ( s e r v e r ) ;
return EXIT FAILURE;

}

EQLOG( eq : : LOG STATS ) << ”Config i n i t took ” << c l o ck . getTimef ( ) << ” ms”
<< endl ;

When the configuration was successfully initialized, the main rendering loop is
executed. It runs until the user exits the configuration, or when a maximum number
of frames has been rendered, specified by a command-line argument. The latter is

18see http://www.equalizergraphics.com/documents/design/standalone.html
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useful for benchmarks. The Clock is reused for measuring the overall performance.
A new frame is started using Config::startFrame and a frame is finished using Con-
fig::finishFrame.

When a new frame is started, the server computes all rendering tasks and sends
them to the appropriate render client nodes. The render client nodes dispatch the
tasks to the correct node or pipe thread, where they are executed in order of arrival.

Config::finishFrame blocks on the completion of the frame current - latency. The
latency is specified in the configuration file, and allows several outstanding frames.
This allows overlapping execution in the node processes and pipe threads and min-
imizes idle times.

By default, Config::finishFrame also synchronizes the completion of all local ren-
dering tasks for the current frame. This facilitates porting of existing rendering
codes, since the database does not have to be multi-buffered. Applications such
as eqPly, which do not need this per-node frame synchronization, can disable it as
explained in Section 7.2.2.

frame before last

last finished frame

frame before last last finished frame

Asynchronous

Synchronous

idle idle

Figure 24: Synchronous and asynchronous execution

Figure 24 shows the execution of the rendering tasks of a 2-node 2D compound
without latency and with a latency of one frame. The asynchronous execution
pipelines certain rendering operations and hides imbalances in the load distribution,
resulting in an improved framerate. For example, we have observed a speedup of
15% on a five-node rendering cluster when using a latency of one frame instead of
no latency19. A latency of one or two frames is normally not perceived by the user.

eqPly uses event-driven execution, that is, it only request new rendering frames
if an event or animation requires an update. The eqPly::Config maintains a dirty
state, which is cleared after a frame has been started, and set when an event causes
a redraw. Furthermore, when an animation is running or head tracking is active,
the config always signals the need for a new frame.

If the application detects that it is currently idle, all pending commands are
gradually flushed, while still looking for a redraw event. Then it waits and handles
one event at a time, until a redraw is needed:

// 4 . run main loop
u in t 32 t maxFrames = in i tDa ta . getMaxFrames ( ) ;

c l o ck . r e s e t ( ) ;

19http://www.equalizergraphics.com/scalability.html
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while ( con f i g−>isRunning ( ) && maxFrames−− )
{

con f i g−>startFrame ( ) ;
// conf ig−>renderData ( . . . ) ;
con f i g−>f in i shFrame ( ) ;

while ( ! con f i g−>needsRedraw ( ) ) // wait f o r an event r e qu i r i n g redraw
{

i f ( hasCommands( ) ) // execute non−c r i t i c a l pending commands
{

processCommand ( ) ;
con f i g−>handleEvents ( ) ; // non−b l o c k i n g

}
else // no pending commands , b l o c k on user event
{

const eq : : ConfigEvent event = con f ig−>nextEvent ( ) ;
i f ( ! con f i g−>handleEvent ( event ) )

EQVERB << ”Unhandled ” << event << endl ;
}

}
con f i g−>handleEvents ( ) ; // process a l l pending event s

}

When the main rendering loop has finished, Config::finishAllFrames is called to
catch up with the latency. It returns after all outstanding frames have been ren-
dered, and is needed to provide an accurate measurement of the framerate:

const u in t 32 t frame = con f ig−>f i n i shAl lFrames ( ) ;
const f loat time = c lock . getTimef ( ) ;
EQLOG( eq : : LOG STATS ) << ”Rendering took ” << time << ” ms ( ” << frame

<< ” frames @ ” << ( frame / time 1000 . f )
<< ” FPS) ” << endl ;

The remainder of the application code cleans up in the reverse order of initializa-
tion. The config is exited, released and the connection to the server is closed:

// 5 . e x i t con f i g
c l o ck . r e s e t ( ) ;
con f i g−>e x i t ( ) ;
EQLOG( eq : : LOG STATS ) << ”Exit took ” << c l o ck . getTimef ( ) << ” ms” <<endl ;

// 6 . c leanup and e x i t
s e rve r−>r e l e a s eCon f i g ( c on f i g ) ;
i f ( ! d i s connec tSe rve r ( s e r v e r ) )

EQERROR << ” C l i en t : : d i s connec tSe rve r f a i l e d ” << endl ;
s e r v e r = 0 ;
return EXIT SUCCESS ;

}

6.2.2. Render Clients

In the second and third use case of the eqPly, when the executable is used as a
render client, Client::initLocal never returns. Therefore the application’s main loop
is never executed. To keep the client resident, the eqPly example overrides the client
loop to keep it running beyond one configuration run:
bool Appl i ca t ion : : c l i en tLoop ( )
{

i f ( ! i n i tDa ta . i sRe s i d en t ( ) ) // execute only one con f i g run
return eq : : C l i en t : : c l i en tLoop ( ) ;

// e l s e execute c l i e n t l oops ’ f o r e v e r ’
while ( true ) // TODO: implement SIGHUP handler to e x i t ?
{

i f ( ! eq : : C l i en t : : c l i en tLoop ( ) )
return fa l se ;
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EQINFO << ”One con f i g u r a t i on run s u c c e s s f u l l y executed ” << endl ;
}
return true ;

}

6.3. Distributed Objects

Equalizer provides distributed objects which facilitate the implementation of data
distribution in a cluster environment. Distributed objects are created by subclass-
ing from eq::Object or eq::net::Object. The application programmer implements
serialization and deserialization of the distributed data.

Objects are dynamically assigned to a session, which assigns session-unique identi-
fiers to objects and manages the network communication between different instances
of the same distributed object.

The master version of a distributed object is registered with a eq::net::Session,
which assigns a session-unique identifier to the object. This identifier can be used
by other nodes to map their instance of the object, thus synchronizing the object’s
data with the remotely registered master version.

Distributed objects can be static (immutable) or dynamic. Dynamic objects are
versioned.

The eqPly example uses static distributed objects to provide initial data and the
model to all rendering nodes, as well as a versioned object to provide frame-specific
data such as the camera position to the rendering methods.

6.3.1. Common Usage

eq::net::Object
getInstanceData
applyInstanceData
pack
unpack

Foo::Class

(a)

eq::net::Object

getInstanceData
applyInstanceData
pack
unpack

Foo::Proxy
Foo::Class

(b)

eq::net::Object

getInstanceData
applyInstanceData
pack
unpack

Foo::Distributed

Foo::Class

(c)

Figure 25: Object distribution
using subclassing, proxies
or multiple inheritance

Distributed objects are addressed using session-
unique identifiers, because pointers to other
objects cannot be distributed directly; they
have no meaning on remote nodes. The ses-
sion used to register distributed objects is nor-
mally the eq::Config, which is sub-classed from
eq::net::Session.

The entry point for shared data on a render
client is the identifier passed by the application
to Config::init. This identifier typically contains
the identifier of a static distributed object, and
is passed by Equalizer to all configInit task meth-
ods. Normally this initial object is mapped by
the render clients in Node::configInit. It typically
contains identifiers of other shared data objects.

The distributed data objects referenced by the
initial data object are often versioned objects,
to keep them in sync with the rendered frames.
Similar to the initial identifier passed to Con-
fig::init, an object identifier or object version can
be passed to Config::startFrame. Equalizer will
pass this identifier to all frameStart task meth-
ods. In eqPly, the frame-specific data, e.g., the
global camera data, is versioned. The frame data
identifier is passed in the initial data, and the
frame data version is passed with each new frame
request.
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There are multiple ways of implementing data distribution for an existing C++
class hierarchy:

Subclassing The classes to be distributed inherit from eq::net::Object and imple-
ment the serialization methods. This approach is recommended if the source
code of existing classes can be modified. It is used for eqPly::InitData and
eqPly::FrameData. (Figure 25(a))

Proxies For each object to be distributed, a proxy object is created which manages
data distribution for its associated object. This requires the application to
track changes on the object separately from the object itself. The model data
distribution of eqPly is using this pattern. (Figure 25(b))

Multiple Inheritance A new class inheriting from the class to be distributed and
from eq::net::Object implements the data distribution. This requires the ap-
plication to instantiate a different type of object instead of the existing object,
and to create wrapper methods in the superclass calling the original method
and setting the appropriate dirty flags. This pattern is not used in eqPly.
(Figure 25(c))

6.3.2. Change Handling

Equalizer determines the way changes are to be handled by calling Object::get-
ChangeType during the registration of the master version of a distributed object.
The change type determines the memory footprint and the contract for the serial-
ization methods. The following change types are possible:

STATIC The object is not versioned. The instance data is serialized whenever a
new slave instance is mapped. No additional data is stored.

INSTANCE The object is versioned, and the instance and delta data is identical,
that is, only instance data is serialized. Previous instance data is saved to be
able to map old versions.

DELTA The object is versioned, and the delta data is typically smaller than the
instance data. Both the delta and instance data are serialized and saved to
map old versions.

UNBUFFERED The object is versioned. No data is stored, and no previous ver-
sions can be mapped. The instance data is serialized whenever a new slave
instance is mapped. The application can choose to use a different, more opti-
mal implementation to pack deltas.

6.3.3. InitData - a Static Distributed Object

The InitData class holds a couple of parameters needed during initialization. These
parameters never change during one configuration run, and are therefore static.

On the application side, the class LocalInitData subclasses InitData to provide
the command line parsing and to set the default values. The render nodes only
instantiate the distributed part in InitData.

A static distributed object has to implement getInstanceData and applyInstance-
Data to serialize and deserialize the object’s distributed data. These method provide
an output or input stream as a parameter, which abstracts the data transmission
and can be used like a std::stream.

The data streams implement efficient buffering and data transport between nodes.
They perform no type checking or transformation on the data. It is the application’s
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responsibility to exactly match the order and types of variables during serialization
and de-serialization.

Custom data type serializers can be implemented by providing the appropriate
serialization functions. No pointers should be directly transmitted through the data
streams. For pointers, the corresponding object is typically a distributed object as
well, and it’s identifier and potentially version is transmitted in place of its pointer.

For InitData, serialization in getInstanceData and de-serialization in applyInstance-
Data is performed by streaming all member variables to or from the provided data
streams:
void In i tData : : get InstanceData ( eq : : net : : DataOStream& os )
{

os << frameDataID << windowSystem << renderMode << useGLSL << invFaces
<< l o g o ;

}

void In i tData : : applyInstanceData ( eq : : net : : DataIStream& i s )
{

i s >> frameDataID >> windowSystem >> renderMode >> useGLSL >> invFaces
>> l o g o ;

EQASSERT( frameDataID != EQ ID INVALID ) ;
EQINFO << ”New Ini tData in s t ance ” << endl ;

}

6.3.4. FrameData - a Versioned Distributed Object

Versioned objects have to override getChangeType to indicate how they want to have
changes to be handled. All types of versioned objects currently implemented have
the following characteristics:

Only the master instance of the object is writable, that is, eq::net::Object::com-
mit can be called only on the master instance to generate a new version.

Slave instance versions can only be advanced, that is, eq::net::Object::sync(
version ) with a version smaller than the current version will fail.

Newly mapped slave instances are mapped to the oldest available version by
default, or to the version specified when calling Session::mapObject.

Upon commit the delta data from the previous version is sent to all mapped
slave instances. The data is queued on the remote node, and is applied when the
application calls sync to synchronize the object to a new version. The sync method
might block if a version has not yet been committed or is still in transmission.

Not syncing a mapped, versioned object creates a memory leak. The method
Object::notifyNewHeadVersion is called whenever a new version is received by the
node. The notification is send from the command thread, which is different from
the node main thread. The object should not be synced from this method, but
instead a message may be send to the application, which then takes the appropriate
action. The default implementation asserts when too many versions have been
queued to detect memory leaks during development.

Besides the instance data (de-)serialization methods used to map an object,
versioned objects may implement pack and unpack to serialize or de-serialize the
changes since the last version. If these methods are not implemented, their de-
fault implementation forwards the (de-)serialization request to getInstanceData and
applyInstanceData, respectively.
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serialize
deserialize

setDirty
isDirty

_dirtyBits
eq::Object

commit
sync
getChangeType

getInstanceData
applyInstanceData
pack
unpack

getVersion
getHeadVersion
notifyNewHeadVersion

_id
eq::net::Object

Figure 26: eq::Object and
eq::net::Object

The creation of distributed, versioned objects
is further facilitated by eq::Object, which imple-
ments the most common way of tracking data
changes in versioned objects. The concept of a
dirty bit mask is used to mark parts of the object
for serialization, while preserving the capability
to inherit objects. Other ways of implementing
change tracking, e.g., using incarnation counters,
can still be implemented by using eq::net::Object
which leaves this flexibility to the developer. Fig-
ure 26 shows the relationship between eq::Object
and eq::net::Object.

The FrameData is sub-classed from eq::Object, and consequently tracks its changes
by setting the appropriate dirty bit whenever it is changed. The serialization meth-
ods are called by the eq::Object with the dirty bit mask needed to serialize all data,
or with the dirty bit mask of the changes since the last commit. The FrameData
only defines its own dirty bits and serialization code:
/ The changed par t s o f the data s ince the l a s t pack ( ) . /
enum Dir tyBi t s
{

DIRTY CAMERA = eq : : Object : :DIRTY CUSTOM << 0 ,
DIRTY FLAGS = eq : : Object : :DIRTY CUSTOM << 1 ,
DIRTY VIEW = eq : : Object : :DIRTY CUSTOM << 2 ,
DIRTY MESSAGE = eq : : Object : :DIRTY CUSTOM << 3 ,

} ;

void FrameData : : s e r i a l i z e ( eq : : net : : DataOStream& os , const u in t 64 t d i r t yB i t s )
{

eq : : Object : : s e r i a l i z e ( os , d i r t yB i t s ) ;
i f ( d i r t yB i t s & DIRTY CAMERA )

os << t r a n s l a t i o n << r o t a t i o n << modelRotation ;
i f ( d i r t yB i t s & DIRTY FLAGS )

os << modelID << renderMode << colorMode << or tho << s t a t i s t i c s
<< he lp << wire f rame << pi lotMode ;

i f ( d i r t yB i t s & DIRTY VIEW )
os << currentViewID ;

i f ( d i r t yB i t s & DIRTY MESSAGE )
os << message ;

}

void FrameData : : d e s e r i a l i z e ( eq : : net : : DataIStream& is ,
const u in t 64 t d i r t yB i t s )

{
eq : : Object : : d e s e r i a l i z e ( i s , d i r t yB i t s ) ;
i f ( d i r t yB i t s & DIRTY CAMERA )

i s >> t r a n s l a t i o n >> r o t a t i o n >> modelRotation ;
i f ( d i r t yB i t s & DIRTY FLAGS )

i s >> modelID >> renderMode >> colorMode >> or tho >> s t a t i s t i c s
>> he lp >> wire f rame >> pi lotMode ;

i f ( d i r t yB i t s & DIRTY VIEW )
i s >> currentViewID ;

i f ( d i r t yB i t s & DIRTY MESSAGE )
i s >> message ;

}

6.3.5. Scene Data

Some applications might rely on a shared filesystem to access the data, for example
when out-of-core algorithms are used. Other applications prefer to load the data
only on the application process, and use distributed objects to synchronize the scene
data with the render clients.

30



6. The eqPly polygonal renderer

eqPly uses static distributed objects to distribute the model loaded by the ap-
plication. This approach can be easily extended to versioned objects to support
dynamic data modifications.

The kD-tree data structure and rendering code for the model is strongly separated
from Equalizer, and kept in the separate namespace mesh. It can also be used
in other rendering software, for example in a GLUT application. To keep this
separation, an external ’mirror’ hierarchy is constructed around the tree. This
hierarchy of VertexBufferDist nodes is responsible for cloning the model data on the
remote render clients.

left, right child
VertexBufferNode

vertex data
VertexBufferRoot

BoundingSphere
Range

VertexBufferBase

vertex indices
VertexBufferLeaf

VertexBufferBase
left, right child

VertexBufferDist

eq::net::Object

namespace eqPly

namespace mesh

modelID
...

InitData

Figure 27: Scene Data in eqPly

The identifier of the model’s root object of this
distributed hierarchy is passed as part of the Init-
Data for the default model, or as part of the View
for each logical view. It is used on the render
clients to map the model when it is needed for
rendering. Figure 27 shows the UML hierarchy
of the model and distribution classes.

Each VertexBufferDist object corresponds to
one node of the model’s data tree. It is serializing
the data for this node. Furthermore, it mirrors
the kD-tree by having a VertexBufferDist child for
each child of its corresponding tree node. Dur-
ing serialization, the identifier of these children is
sent to the remote nodes, which reconstruct the
mirror distribution hierarchy and model data tree
based on this data.

The serialization function getInstanceData
sends all the data needed to reconstruct the model tree: the object identifiers of
its children, vertex data for the tree root and vertex indices for the leaf nodes, as
well as the bounding sphere and database range of each node. The deserialization
function applyInstanceData retrieves the data in multiple steps, and constructs the
model tree on the fly based on this information. It is omitted here for brevity:
void VertexBuf f e rDi s t : : get InstanceData ( eq : : net : : DataOStream& os )
{

EQASSERT( node ) ;
os << i sRoot ;

i f ( l e f t && r i g h t )
{

os << l e f t −>getID ( ) << r i gh t−>getID ( ) ;

i f ( i sRoot )
{

EQASSERT( roo t ) ;
const mesh : : VertexBufferData& data = root−> data ;

os << data . v e r t i c e s << data . c o l o r s << data . normals << data . i n d i c e s ;
}

}
else
{

os << EQ ID INVALID << EQ ID INVALID ;

EQASSERT( dynamic cast< const mesh : : VertexBuf fe rLea f >( node ) ) ;
const mesh : : VertexBuf fe rLea f l e a f =

static cast< const mesh : : VertexBuf fe rLea f >( node ) ;

os << l e a f−> v e r t e xS t a r t << l e a f−> vertexLength << l e a f−> i ndexS ta r t
<< l e a f−> indexLength ;

}

31



6. The eqPly polygonal renderer

os << node−> boundingSphere << node−> range ;
}

_frameDataID
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_sceneID
_sceneVersion
_cameraData

FrameData

_childIDs
_childVersions

SceneGraphRoot

...

SceneGraphNode
...

SceneGraphNode
...

SceneGraphNode

Application

Config::init( ID )

Render Clients

Node::configInit( ID )

Config::
startFrame( version )

...

...

Distributed Objects

frameStart( version )

Figure 28: Scene Graph Distribution

Applications distributing a
dynamic scene graph use the
frame data instead of the
init data as the entry point
to their scene graph data
structure. Figure 28 shows
one possible implementation,
where the identifier and ver-
sion of the scene graph root
are transported using the
frame data. The scene graph
root then serializes and de-
serializes his immediate chil-
dren by transferring their
identifier and current version,
similar to the static distribu-
tion done by eqPly.

The objects are still cre-
ated by the application, and
then registered or mapped
with the session to distribute
them. When mapping ob-
jects in a hierarchical data
structure, their type often has
to be known to create them.
Equalizer does not currently
provide object typing, this
has to be done by the application, either implicitly in the current implementa-
tion context, or by transferring a type identifier. In eqPly, object typing is implicit
since it is well-defined which object is mapped in which context.

6.4. Config

The configuration is driving the application’s rendering, that is, it is responsible for
updating the data based on received events, requesting new frames to be rendered
and to provide the render clients with the necessary data.

6.4.1. Initialization and Exit

The config initialization happens in parallel, that is, all config initialization tasks are
transmitted by the server at once and their completion is synchronized afterwards.

The tasks are executed by the node and pipe threads in parallel. The parent’s
initialization methods are always executed before any child initialization method.
This parallelization is necessary to allow a speedy startup of the configuration on
large-scale graphics clusters. On the other hand, it means that initialization func-
tions are called even if the parent’s initialization has failed. Figure 29 shows a
sequence diagram of the config initialization.

The eqPly::Config class holds the master versions of the initialization and frame
data. Both objects are registered with the eq::Config, which is the eq::net::Session
used for rendering. Equalizer takes care of the session setup and exit in Client::choose-
Config and Client::releaseConfig, respectively.
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Figure 29: Config Initialization Sequence
The frame data is registered before the initialization data, since its identifier is

transmitted using the InitData. The identifier of the initialization data is transmit-
ted to the render client nodes using the initID parameter of eq::Config::init.

Equalizer will pass this identifier to all configInit calls of the respective objects:
bool Config : : i n i t ( )
{

// i n i t d i s t r i b u t e d o b j e c t s
frameData . data . c o l o r = in i tDa ta . useColor ( ) ;
frameData . data . renderMode = in i tDa ta . getRenderMode ( ) ;

r e g i s t e rOb j e c t ( & frameData ) ;

i n i tDa ta . setFrameDataID ( frameData . getID ( ) ) ;
r e g i s t e rOb j e c t ( & in i tDa ta ) ;

// i n i t con f i g
running = eq : : Conf ig : : i n i t ( i n i tDa ta . getID ( ) ) ;

i f ( ! running )
return fa l se ;

If the configuration was initialized correctly, the configuration tries to set up a
tracking device for head tracking. Equalizer does not provide extensive support for
tracking devices, as this is an orthogonal problem to parallel rendering. Tracking
device support has already been solved by a number of implementations20, which
can and have been easily integrated with Equalizer. The example code in eqPly
provides a reference implementation for the integration of such a tracking library.
Section 7.5 provides more background on head tracking.

// i n i t t r acke r
i f ( ! i n i tDa ta . getTrackerPort ( ) . empty ( ) )
{

i f ( ! t r a c k e r . i n i t ( i n i tDa ta . getTrackerPort ( ) ) )

20VRCO Trackd, VRPN, etc.
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EQWARN << ” Fa i l ed to i n i t i a l i s e t r a cke r ” << endl ;
else
{

// Set up po s i t i on o f t r ac k ing system wrt world space
// Note : t h i s depends on the phy s i c a l i n s t a l l a t i o n .
vmml : : Matr ix4f m( vmml : : Matr ix4f : : IDENTITY ) ;
m. s c a l e ( 1 . f , 1 . f , −1. f ) ;

t r a c k e r . setWorldToEmitter ( m ) ;

m = vmml : : Matr ix4f : : IDENTITY;
m. rotateZ ( −M PI 2 ) ;

t r a c k e r . setSensorToObject ( m ) ;
EQINFO << ”Tracker i n i t i a l i z e d ” << endl ;

}
}

return true ;
}

The exit function of the configuration stops the render clients by calling eq::Con-
fig::exit, and then de-registers the initialization and frame data objects with the
session:
bool Config : : e x i t ( )
{

running = fa l se ;
const bool r e t = eq : : Conf ig : : e x i t ( ) ;

i n i tDa ta . setFrameDataID ( EQ ID INVALID ) ;
d e r e g i s t e rOb j e c t ( & in i tDa ta ) ;
d e r e g i s t e rOb j e c t ( & frameData ) ;

return r e t ;
}

6.4.2. Frame Control

The rendering frames are issued by the application. The eqPly::Config only over-
rides startFrame to update its data before forwarding the start frame request to the
eq::Config.

If a tracker is used, the current head position and orientation is retrieved and
passed to Equalizer, which uses the head matrix together with the wall or projection
description to compute the view frusta, as explained in Section 7.5.

The camera position is updated and the frame data is committed, which generates
a new version of this object. This version is passed to the rendering callbacks and
will be used by the rendering threads to synchronize the frame data to the state
belonging to the current frame:
u in t 32 t Config : : startFrame ( )
{

// update head po s i t i on
i f ( t r a c k e r . isRunning ( ) )
{

t r a c k e r . update ( ) ;
const vmml : : Matr ix4f& headMatrix = t r a c k e r . getMatrix ( ) ;
setHeadMatrix ( headMatrix ) ;

}

// update database
frameData . data . r o t a t i on . preRotateX ( −0.001 f spinX ) ;
frameData . data . r o t a t i on . preRotateY ( −0.001 f spinY ) ;

const u in t 32 t ve r s i on = frameData . commit ( ) ;

return eq : : Conf ig : : startFrame ( ve r s i on ) ;
}
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6.4.3. Event Handling

Events are sent by the render clients to the application using eq::Config::sendEvent.
At the end of the frame, Config::finishFrame calls Config::handleEvents to do the
event handling. The default implementation processes all pending events by calling
Config::handleEvent for each of them.

Since eqPly uses event-driven execution, the config maintains a dirty state to
allow the application to know when a redraw is needed.

The eqPly example implements Config::handleEvent to provide the various reac-
tions to user input, most importantly camera updates based on mouse events. The
camera position has to be handled correctly regarding latency, and is therefore saved
in the frame data:
bool Config : : handleEvent ( const eq : : ConfigEvent event )
{

switch ( event−>type )
{

[ . . . ]
case eq : : ConfigEvent : : POINTER MOTION:

i f ( event−>pointerMotion . buttons == eq : :PTR BUTTON NONE )
return true ;

i f ( event−>pointerMotion . buttons == eq : :PTR BUTTON1 )
{

spinX = 0 ;
spinY = 0 ;

frameData . data . r o t a t i on . preRotateX (
−0.005 f event−>pointerMotion . dx ) ;

frameData . data . r o t a t i on . preRotateY (
−0.005 f event−>pointerMotion . dy ) ;

redraw = true ;
}
else i f ( event−>pointerMotion . buttons == eq : :PTR BUTTON2 | |

event−>pointerMotion . buttons == ( eq : :PTR BUTTON1 |
eq : :PTR BUTTON3 ) )

{
frameData . data . t r a n s l a t i o n . z +=

.005 f event−>pointerMotion . dy ;
redraw = true ;

}
else i f ( event−>pointerMotion . buttons == eq : :PTR BUTTON3 )
{

frameData . data . t r a n s l a t i o n . x +=
.0005 f event−>pointerMotion . dx ;

frameData . data . t r a n s l a t i o n . y −=
.0005 f event−>pointerMotion . dy ;

redraw = true ;
}
return true ;

default :
break ;

}
return eq : : Conf ig : : handleEvent ( event ) ;

}

6.4.4. Model Handling

Model data is handled by the config. Models in eqPly are static, and therefore the
render clients only need to map one instance of the model per node.

Multiple models can be loaded in eqPly. A configuration has a default model,
stored in InitData, and one model per view, stored and distributed using View. The
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loaded models are evenly distributed over the available views of the configuration,
as shown in Figure 13.

The channel acquires the model during rendering from the config, using the model
identifier from its current view, or from the frame data if no view is configured.

The config maintains the mapped models, and lazily maps new models, which are
registered by the application process:
const Model Conf ig : : getModel ( const u in t 32 t modelID )
{

i f ( modelID == EQ ID INVALID ) // no model loaded by app l i c a t i on
return 0 ;

// Accessed concurren t l y from pipe threads
eq : : base : : ScopedMutex< eq : : base : : SpinLock > mutex ( modelLock ) ;

const s i z e t nModels = models . s i z e ( ) ;
EQASSERT( modelDist . s i z e ( ) == nModels ) ;

for ( s i z e t i = 0 ; i < nModels ; ++i )
{

const ModelDist d i s t = modelDist [ i ] ;
i f ( d i s t−>getID ( ) == modelID )

return models [ i ] ;
}

modelDist . push back ( new ModelDist ) ;
Model model = modelDist . back()−>mapModel ( this , modelID ) ;
EQASSERT( model ) ;
models . push back ( model ) ;

return model ;
}

6.4.5. Layout and View Handling

For layout and model selection, eqPly maintains an active view and canvas. The
identifier of the active view is stored in the frame data, which is used by the render
client to highlight it using a different background color. The active view can be
selected by clicking into a view, or by cycling through all the views using a keyboard
shortcut.

The model of the active view can be changed using a keyboard shortcut. The
model is view-specific, and therefore the model identifier for each view is stored on
the view, which is used to retrieve the model on the render clients.

View-specific data is not limited to a model. Applications can choose to make
any application-specific data view-specific, e.g., cameras, rendering modes or anno-
tations. A view is a generic concept for an application-specific view on data, eqPly
is using different models to illustrate the concept:
bool Config : : handleKeyEvent ( const eq : : KeyEvent& event )
{

switch ( event . key )
{

. . .
case ’m’ :
case ’M’ :
{

i f ( modelDist . empty ( ) ) // no models
return true ;

// current model
const u in t 32 t viewID = frameData . getCurrentViewID ( ) ;
View view = static cast< View >( f indView ( viewID ) ) ;
const u in t 32 t currentID = view ?
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view−>getModelID ( ) : frameData . getModelID ( ) ;

// next model
ModelDistVector : : c o n s t i t e r a t o r i ;
for ( i = modelDist . begin ( ) ; i != modelDist . end ( ) ; ++i )
{

i f ( ( i )−>getID ( ) != currentID )
continue ;

++i ;
break ;

}
i f ( i == modelDist . end ( ) )

i = modelDist . begin ( ) ; // wrap around

// s e t i d e n t i f i e r on view or frame data ( d e f a u l t model )
const u in t 32 t modelID = ( i )−>getID ( ) ;
i f ( view )

view−>setModelID ( modelID ) ;
else

frameData . setModelID ( modelID ) ;
return true ;

}
. . .

}
}

The layout of the canvas with the active view can also be dynamically switched
using a keyboard shortcut. The first canvas using the layout is found, and then the
next layout of the configuration is set on this canvas.

Switching a layout causes the initialization and de-initialization task methods to
be called on the involved channels, and potentially windows, pipes and nodes. This
operation might fail, which will cause the config to stop running.

Layout switching is typically used to change the presentation of views at runtime.
The source code omitted for brevity.

6.5. Node

For each active render client, one eq::Node instance is created on the appropriate
machine. Nodes are only instantiated on their render client processes, i.e., each
process will only have one instance of the eq::Node class. The application process
might also have a node class, which is handled in exactly the same way as the render
client nodes. The application and render clients might use a different node factory,
instantiating a different type of eq::Node.

All dynamic data is multi-buffered in eqPly. During initialization, the node relaxes
the thread synchronization between the node and pipe threads, unless the config-
uration file overrides this. Section 7.2 provides a detailed explanation of thread
synchronization in Equalizer.

During node initialization the static, per-config data is mapped to a local instance
using the identifier passed from Config::init. No pipe, window or channel tasks
methods are executed before Node::configInit has returned:
bool Node : : c o n f i g I n i t ( const u in t 32 t i n i t ID )
{

i f ( ! eq : : Node : : c o n f i g I n i t ( i n i t ID ) )
return fa l se ;

// Al l render data i s s t a t i c or mult i−bu f f e red , we can run asynchronous ly
i f ( g e t IAt t r i bu t e ( IATTR THREAD MODEL ) == eq : :UNDEFINED )

s e t IA t t r i bu t e ( IATTR THREAD MODEL, eq : :ASYNC ) ;

Config c on f i g = static cast< Config >( getConf ig ( ) ) ;
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return con f i g−>mapData( i n i t ID ) ;
}

The actual mapping of the static data is done by the config. The config retrieves
the distributed InitData. The object is directly unmapped since it is static, and the
data has been retrieved:
bool Config : : mapData( const u in t 32 t in itDataID )
{

i f ( i n i tDa ta . getID ( ) == EQ ID INVALID )
{

EQCHECK( mapObject ( & in i tData , in itDataID ) ) ;
unmapObject ( & in i tDa ta ) ; // data was r e t r i e v ed , unmap immediate ly

}
else // appNode , in i tDa ta i s r e g i s t e r e d a l ready

EQASSERT( in i tDa ta . getID ( ) == initDataID ) ;
}

6.6. Pipe

All task methods for a pipe and its children are executed in a separate thread.
This approach optimizes usage of the GPU, since all tasks are executed serially and
therefore do not compete for resources or cause OpenGL context switches. Later
versions of Equalizer might introduce threaded windows to allow the parallel and
independent execution of rendering tasks on a single pipe.

6.6.1. Initialization and Exit

Pipe threads are not explicitly synchronized with each other, that is, pipes might be
rendering different frames at any given time. Therefore frame-specific data has to
be allocated for each pipe thread, which in the case of eqPly is the frame data. The
frame data is a member variable of the eqPly::Pipe, and is mapped to the identifier
provided by the initialization data. The initialization in eq::Pipe does the GPU-
specific initialization, which is window-system-dependent. On AGL the display ID
is determined, and on glX the display connection is opened.
bool Pipe : : c o n f i g I n i t ( const u in t 32 t i n i t ID )
{

const Config c on f i g = static cast<Config >( getConf ig ( ) ) ;
const In i tData& in i tData = con f ig−>get In i tData ( ) ;
const u in t 32 t frameDataID = in i tData . getFrameDataID ( ) ;
eq : : Conf ig c on f i g = getConf ig ( ) ;

const bool mapped = con f ig−>mapObject ( & frameData , frameDataID ) ;
EQASSERT( mapped ) ;

return eq : : Pipe : : c o n f i g I n i t ( i n i t ID ) ;
}

The config exit function is similar to the config initialization. The frame data is
unmapped and GPU-specific data is de-initialized by eq::Config::exit:
bool Pipe : : c on f i gEx i t ( )
{

eq : : Conf ig c on f i g = getConf ig ( ) ;
con f i g−>unmapObject ( & frameData ) ;

return eq : : Pipe : : c on f i gEx i t ( ) ;
}
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6.6.2. Window System

Equalizer supports multiple window system interfaces, at the moment glX/X11,
WGL and AGL/Carbon. Some operating systems, and therefore some Equalizer
versions, support multiple window systems concurrently21.

Each pipe might use a different window system for rendering, which is determined
before Pipe::configInit by Pipe::selectWindowSystem. The default implementation of
selectWindowSystem loops over all window systems and returns the first supported
window system, determined by using supportsWindowSystem.

The eqPly examples allows selecting the window system using a command line
option. Therefore the implementation of selectWindowSystem is overwritten and
returns the specified window system, if supported:
eq : : WindowSystem Pipe : : selectWindowSystem ( ) const
{

const Config c on f i g = static cast<Config >( getConf ig ( ) ) ;
const In i tData& in i tData = con f ig−>get In i tData ( ) ;
const eq : : WindowSystem ws = in i tData . getWindowSystem ( ) ;

i f ( ws == eq : :WINDOW SYSTEM NONE )
return eq : : Pipe : : selectWindowSystem ( ) ;

i f ( ! supportsWindowSystem ( ws ) )
{

EQWARN << ”Window system ” << ws
<< ” not supported , us ing d e f au l t window system” << endl ;

return eq : : Pipe : : selectWindowSystem ( ) ;
}

return ws ;
}

6.6.3. Carbon/AGL Thread Safety

Parts of the Carbon API used for window and event handling in the AGL window
system are not thread safe. The application has to call eq::Global::enterCarbon be-
fore any thread-unsafe Carbon call, and eq::Global::leaveCarbon afterwards. These
functions should be used only during window initialization and exit, not during ren-
dering. For various reasons enterCarbon might block up to 50 milliseconds. Carbon
calls in the window event handling routine Window::processEvent are thread-safe,
since the global carbon lock is set in this method. Please contact the Equalizer
developer mailing list if you need to use Carbon calls on a per-frame basis.

6.6.4. Frame Control

All task methods for a given frame of the pipe, window and channel entities be-
longing to the thread are executed in one block, starting with Pipe::frameStart and
finished by Pipe::finishFrame. The frame start callback is therefore the natural place
to update all frame-specific data to the version belonging to the frame.

In eqPly, the version of the only frame-specific object FrameData is passed as the
per-frame id from Config::startFrame to the frame task methods. The pipe uses this
version to update its instance of the frame data to the current version, and then
unlocks its child entities by calling startFrame:
void Pipe : : f rameStart ( const u in t 32 t frameID , const u in t 32 t frameNumber )
{

node−>waitFrameStarted ( frameNumber ) ;

frameData . sync ( frameID ) ;
startFrame ( frameNumber ) ;

21see http://www.equalizergraphics.com/compatibility.html
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}

6.7. Window

The Equalizer window abstracts an OpenGL drawable and a rendering context.
When using the default window initialization functions, all windows of a pipe share
the OpenGL context. This allows reuse of OpenGL objects such as display lists and
textures between all windows of one pipe.

The window class is the natural place for the application to maintain all data
specific to the OpenGL context.

6.7.1. Window System Interface

The particulars of creating a window and OpenGL context depend on the window
system used. One can either use the implementation provided by the operating
system, e.g., AGL, WGL or glX, or some higher-level toolkit, e.g., Qt.

OS-Specific Default Implementation

configInitOSWindow
configExitOSWindow
makeCurrent
swapBuffers

Window

configInit
configExit
makeCurrent
swapBuffers

OSWindow

getGLXContext
getXDrawable
processEvent

GLXWindowIFgetAGLContext
getCarbonWindow
getAGLPBuffer
processEvent

AGLWindowIF getWGLContext
getWGLDC
getWGLWindowHandle
getWGLPBufferHandle
processEvent

WGLWindowIF

chooseXVisualInfo
createGLXContext
configInitGLXWindow
configInitGLXPBuffer
setXDrawable
setGLXContext

GLXWindowchooseAGLPixelFormat
createAGLContext
configInitAGLWindow
configInitAGLPBuffer
setAGLContext
setCarbonWindow
setAGLPBuffer

AGLWindow

chooseWGLPixelFormat
createWGLContext
configInitWGLWindow
configInitWGLPBuffer
setWGLContext
setWGLWindowHandle
setWGLPBufferHandle

WGLWindow

OS-Specific Interface

OS-Agnostic Implementation

...
QTWindow

...

Others

...
CustomWGLWindow

Figure 30: eq::OSWindow UML class hierarchy

All window-system specific
functionality is implemented
by a specialization of eq::OS-
Window. The OSWindow
class defines the minimal in-
terface to be implemented for
a new window system. Each
Window uses one OSWindow
during execution. This sep-
aration allows an easy im-
plementation and adaption to
another window system or ap-
plication.

Equalizer provides a generic
interface and implementation
for the three most common
window systems: AGL, WGL
and glX. The interfaces de-
fine the minimal functionality
needed to reuse other window
system specific classes, for ex-
ample the AGL, WGL and glX event handlers. The implementation derived from
these interfaces provides a sample implementation which honors all configurable
window attributes.

6.7.2. Initialization and Exit

The initialization sequence uses multiple, override-able task methods. The main
task method configInit calls first configInitOSWindow, which creates and initializes
the OSWindow for this window. The OSWindow initialization code is implementa-
tion specific. If the OSWindow was initialized successfully, configInit calls config-
InitGL, which performs the generic OpenGL state initialization. The default imple-
mentation sets up some typical OpenGL state, e.g., it enables the depth test. Most
nontrivial applications do override this task method.

The OSWindow initialization takes into account various attributes set in the con-
figuration file. Attributes include the size of the various frame buffer planes (color,
alpha, depth, stencil) as well as other framebuffer attributes, such as quad-buffered
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stereo, doublebuffering, fullscreen mode and window decorations. Some of the at-
tributes, such as stereo, doublebuffer and stencil can be set to eq::AUTO, in which
case the Equalizer default implementation will test for their availability and enable
them if possible.

For the window-system specific initialization, eqPly uses the default Equalizer im-
plementation. The eqPly window initialization only overrides the OpenGL-specific
initialization function configInitGL to initialize a state object and an overlay logo.
This function is only called if an OpenGL context was created and made current:
bool Window : : con f ig In i tGL ( const u in t 32 t i n i t ID )
{

i f ( ! eq : : Window : : con f ig In i tGL ( in i t ID ) )
return fa l se ;

g lL ightMode l i ( GL LIGHT MODEL LOCAL VIEWER, 1 ) ;
g lEnable ( GL CULL FACE ) ; // OPT − produces sparser images in DB mode
g lCul lFace ( GL BACK ) ;

EQASSERT( ! s t a t e ) ;
s t a t e = new VertexBuf f e rState ( getObjectManager ( ) ) ;
loadLogo ( ) ;

const Config c on f i g = static cast< const Config >( getConf ig ( ) ) ;
const In i tData& in i tData = con f ig−>get In i tData ( ) ;
i f ( in i tData . useGLSL ( ) )

loadShaders ( ) ;

return true ;
}

The state object is used to handle the creation of OpenGL objects in a multipipe,
multithreaded execution environment. It uses the object manager of the eq::Window,
which is described in detail in Section 6.7.3.

The logo texture is loaded from the file system and bound to a texture ID used
later by the channel for rendering. A code listing is omitted, since the code consists
of standard OpenGL calls and is not Equalizer-specific.

The window exit happens in the reverse order of the initialization. First, con-
figExitGL is called to de-initialize OpenGL, followed by configExitOSWindow which
de-initializes the drawable and context and deletes the OSWindow allocated in con-
figInitOSWindow.

The window OpenGL exit function of eqPly de-allocates all OpenGL objects. The
object manager does not delete the object in its destructor, since it does not know
if an OpenGL context is still current.
bool Window : : conf igExitGL ( )
{

i f ( s t a t e )
s t a t e−>d e l e t eA l l ( ) ;

delete s t a t e ;
s t a t e = 0 ;

return eq : : Window : : conf igExitGL ( ) ;
}

6.7.3. Object Manager

The object manager is, strictly speaking, not a part of the window. It is mentioned
here since the eqPly window uses an object manager.

The state object in eqPly gathers all rendering state, which includes an object
manager for OpenGL object allocation.
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The object manager (OM) is a utility class and can be used to manage OpenGL
objects across shared contexts. Typically one OM is used for each set of shared
contexts and spawns all contexts of a single GPU22.

The OM is a template class. The template type is the key used to identify objects.
The same key is used by all contexts to get the OpenGL name of an object.

Each eq::Window has an object manager with the key type const void*, for as
long as it is initialized. Each window can have a shared context window. The
OM is shared with this shared context window. The shared context window is set
by default to the first window of each pipe, and therefore the OM will be shared
between all windows of a pipe. The method eq::Window::setSharedContextWindow
can be used to set up a different context sharing.

eqPly uses the window’s object manager in the rendering code to obtain the
OpenGL objects for a given data item. The address of the data item to be rendered
is used as the key.

For the currently supported types of OpenGL objects please refer to the API
documentation on the Equalizer website. For each object, the following functions
are available:

supportsObjects() returns true if the usage for this particular type of objects is
supported. For objects available in OpenGL 1.1 or earlier, this function is not
implemented.

getObject( key ) returns the object associated with the given key, or FAILED.

newObject( key ) allocates a new object for the given key. Returns FAILED if the
object already exists or if the allocation failed.

obtainObject( key ) convenience function which gets or obtains the object associ-
ated with the given key. Returns FAILED only if the object allocation failed.

deleteObject( key ) deletes the object.

6.8. Channel

The channel is the heart of the application, it contains the actual rendering code.
The channel is used to perform the various rendering operations for the compounds.
Each channel has a set of task methods to execute the clear, draw, readback and
assemble stages needed to render a frame.

6.8.1. Initialization and Exit

During channel initialization, the near and far planes are set to reasonable values
to contain the whole model. During rendering, the near and far planes are adjusted
dynamically to the current model position:
bool Channel : : c o n f i g I n i t ( const u in t 32 t i n i t ID )
{

setNearFar ( 0 . 1 f , 10 .0 f ) ;
return true ;

}

22http://www.equalizergraphics.com/documents/design/objectManager.html
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6.8.2. Rendering

The central rendering routine is Channel::frameDraw. This routine contains the
application’s OpenGL rendering code, which is being rendered using the contextual
information provided by Equalizer. As most of the other task methods, frameDraw
is called in parallel by Equalizer on all pipe threads in the configuration. Therefore
the rendering must not write to shared data, which is the case for all major scene
graph implementations.

In eqPly, the OpenGL context is first set up using various apply convenience
methods from the base Equalizer channel class. Each of the apply methods uses the
corresponding get method(s) and then calls the appropriate OpenGL function(s).
It is also possible to just query the values from Equalizer using the get methods,
and use them to set up the OpenGL state appropriately, for example by passing
the parameters to the renderer used by the application.

For example, the implementation for eq::Channel::applyBuffer does set up the cor-
rect rendering buffer and color mask, which depends on the current eye pass and
possible anaglyphic stereo parameters:
void eq : : Channel : : app lyBuf fe r ( )
{

glReadBuf fer ( getReadBuffer ( ) ) ;
glDrawBuffer ( getDrawBuffer ( ) ) ;

const ColorMask& colorMask = getDrawBufferMask ( ) ;
glColorMask ( colorMask . red , colorMask . green , colorMask . blue , true ) ;

}

The contextual information has to be used to render the view as expected by
Equalizer. Failure to use certain information will result in incorrect rendering for
some or all configurations. The channel render context consist of:

Buffer The OpenGL read and draw buffer as well as color mask. These parameters
are influenced by the current eye pass, eye separation and anaglyphic stereo
settings.

Viewport The two-dimensional pixel viewport restricting the rendering area within
the channel. For correct operations, both glViewport and glScissor have to be
used. The pixel viewport is influenced by the destination channel’s viewport
definition and compound viewports set for sort-first/2D decompositions.

Frustum The same frustum parameters as defined by glFrustum. Typically the
frustum used to set up the OpenGL projection matrix. The frustum is influ-
enced by the destination channel’s view definition, compound viewports, head
matrix and the current eye pass.

Head Transformation A transformation matrix positioning the frustum. This is
typically an identity matrix and is used for off-axis frusta in immersive ren-
dering. It is normally used to set up the ‘view’ part of the modelview matrix,
before static light sources are defined.

Range A one-dimensional range with the interval [0..1]. This parameter is optional
and should be used by the application to render only the appropriate subset
of its data. It is influenced by the compound range attribute.

The frameDraw method in eqPly calls the frameDraw method from the parent class,
the Equalizer channel. The default frameDraw method uses the apply convenience
functions to setup the OpenGL state for all render context information, except for
the range which will be used later during rendering:
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void eq : : Channel : : frameDraw ( const u in t 32 t frameID )
{

app lyBuf f e r ( ) ;
applyViewport ( ) ;

glMatrixMode ( GL PROJECTION ) ;
g lLoadIdent i ty ( ) ;
applyFrustum ( ) ;

glMatrixMode ( GL MODELVIEW ) ;
g lLoadIdent i ty ( ) ;
applyHeadTransform ( ) ;

}

void Channel : : frameDraw ( const u in t 32 t frameID )
{

// Setup OpenGL s t a t e
eq : : Channel : : frameDraw ( frameID ) ;

Figure 31: Destination view
of a DB compound using
demonstrative coloring

After the basic view setup, a directional light
is configured, and the model is positioned us-
ing the camera parameters from the frame data.
The camera parameters are transported using the
frame data to ensure that all channels render a
given frame using the same position.

Three different ways of coloring the object are
possible: Using the colors of the mode, using a
unique per-channel color to demonstrate the de-
composition as shown in Figure 31, or using solid
white for anaglyphic stereo. The model colors are
per-vertex and are set during rendering, whereas
the unique per-channel color is set in frameDraw
for the whole model:

g lL i gh t f v ( GL LIGHT0 , GL POSITION, l i g h tP o s i t i o n ) ;
g lL i gh t f v ( GL LIGHT0 , GL AMBIENT, l ightAmbient ) ;
g lL i gh t f v ( GL LIGHT0 , GL DIFFUSE, l i g h tD i f f u s e ) ;
g lL i gh t f v ( GL LIGHT0 , GL SPECULAR, l i g h tSp e cu l a r ) ;

g lMa t e r i a l f v ( GL FRONT, GL AMBIENT, materialAmbient ) ;
g lMa t e r i a l f v ( GL FRONT, GL DIFFUSE, ma t e r i a lD i f f u s e ) ;
g lMa t e r i a l f v ( GL FRONT, GL SPECULAR, mate r i a lSpecu la r ) ;
g lMa t e r i a l i ( GL FRONT, GL SHININESS , mat e r i a l Sh i n i n e s s ) ;

const FrameData& frameData = getFrameData ( ) ;

glPolygonMode ( GL FRONT AND BACK,
frameData . useWireframe ( ) ? GL LINE : GL FILL ) ;

const eq : : Vector3 f& t r a n s l a t i o n = frameData . getCameraTranslat ion ( ) ;

g lMultMatr ixf ( frameData . getCameraRotation ( ) . array ) ;
g lT r an s l a t e f ( t r a n s l a t i o n . x ( ) , t r a n s l a t i o n . y ( ) , t r a n s l a t i o n . z ( ) ) ;
g lMultMatr ixf ( frameData . getModelRotation ( ) . array ) ;

i f ( frameData . getColorMode ( ) == COLORDEMO )
{

const eq : : Vector3ub co l o r = getUniqueColor ( ) ;
g lColor3ub ( c o l o r . r ( ) , c o l o r . g ( ) , c o l o r . b ( ) ) ;

}
else

g lCo l o r 3 f ( . 75 f , . 75 f , . 75 f ) ;

Finally the model is rendered. If the model was not loaded during node initial-
ization, a quad is drawn in its place:
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const Model model = getModel ( ) ;
i f ( model )
{

drawModel ( model ) ;
}
else
{

glNormal3f ( 0 . f , −1. f , 0 . f ) ;
g lBeg in ( GL TRIANGLE STRIP ) ;
g lVe r t ex3 f ( . 25 f , 0 . f , . 25 f ) ;
g lVe r t ex3 f ( . 25 f , 0 . f , −.25 f ) ;
g lVe r t ex3 f ( −.25 f , 0 . f , . 25 f ) ;
g lVe r t ex3 f ( −.25 f , 0 . f , −.25 f ) ;
glEnd ( ) ;

}
}

To draw the model, a helper class for view frustum culling is set up using the
view frustum from Equalizer and the camera position from the frame data. The
frustum helper computes the six frustum planes from the projection and modelView
matrices. During rendering, the bounding spheres of the model are tested against
these planes to determine the visibility with the frustum.

Furthermore, the render state from the window and the database range from the
channel is obtained. The render state manages display list or VBO allocation:
void Channel : : drawModel ( const Model model )
{

Window window = static cast<Window >( getWindow ( ) ) ;
mesh : : Ver texBuf f e rState& s t a t e = window−>ge tSta t e ( ) ;

const Pipe pipe = static cast<Pipe >( getPipe ( ) ) ;
const FrameData& frameData = pipe−>getFrameData ( ) ;

const eq : : Range& range = getRange ( ) ;
vmml : : FrustumCul ler f c u l l e r ;

i f ( frameData . getColorMode ( ) == COLORMODEL && model−>hasColors ( ) )
s t a t e . s e tCo l o r s ( true ) ;

else
s t a t e . s e tCo l o r s ( fa l se ) ;

in i tFrustum ( cu l l e r , model−>getBoundingSphere ( ) ) ;
model−>beginRendering ( s t a t e ) ;

The model data is spatially organized in a 3-dimensional kD-tree23 for efficient
view frustum culling. When the model is loaded by Node::configInit, it is prepro-
cessed into the kD-tree. During this preprocessing step, each node of the tree gets
a database range assigned. The root node has the range [0, 1], its left child [0, 0.5]
and its right child [0.5, 1], and so on for all nodes in the tree. The preprocessed
model is saved in a binary format for accelerating subsequent loading.

The rendering loop maintains a list of candidates to render, which initially con-
tains the root node. Each candidate of this list is tested for full visibility against
the frustum and range, and rendered if visible. It is dropped if it is fully invisible or
fully out of range. If it is partially visible or partially in range, the children of the
node are added to the candidate list. Figure 32 shows a flow chart of the rendering
algorithm, which performs efficient view frustum and range culling.

The actual rendering uses display lists or vertex buffer objects. These OpenGL
objects are allocated using the object manager. The rendering is done by the
leaf nodes, which are small enough to store the vertex indices in a short value for
optimal performance with VBO’s. The leaf nodes reuse the objects stored in the
object manager, or create and set up new objects if it was not yet set up. Since one
23See also http://en.wikipedia.org/wiki/Kd-tree
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Figure 32: Main Render Loop

object manager is used per thread (pipe), this allows a thread-safe sharing of the
compiled display lists or VBO’s across all windows of a pipe.

The main rendering loop in eqPly looks like this:
model−>beginRendering ( s t a t e ) ;

// s t a r t with root node
vector< const VertexBufferBase > cand idate s ;
cand idate s . push back ( model ) ;

while ( ! cand idate s . empty ( ) )
{

const VertexBufferBase treeNode = cand idate s . back ( ) ;
cand idate s . pop back ( ) ;

// comple te l y out o f range check
i f ( treeNode−>getRange ( ) [ 0 ] >= range . end | |

treeNode−>getRange ( ) [ 1 ] < range . s t a r t )
continue ;

// bounding sphere view frustum c u l l i n g
switch ( c u l l e r . t e s tSphere ( treeNode−>getBoundingSphere ( ) ) )
{

case vmml : : VISIBILITY FULL :
// i f f u l l y v i s i b l e and f u l l y in range , render i t
i f ( treeNode−>getRange ( ) [ 0 ] >= range . s t a r t &&

treeNode−>getRange ( ) [ 1 ] < range . end )
{

treeNode−>render ( s t a t e ) ;
break ;

}
// p a r t i a l range , f a l l through to p a r t i a l v i s i b i l i t y

case vmml : : VISIBILITY PARTIAL :
{

const VertexBufferBase l e f t = treeNode−>ge tLe f t ( ) ;
const VertexBufferBase r i g h t = treeNode−>getRight ( ) ;

i f ( ! l e f t && ! r i g h t )
{
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i f ( treeNode−>getRange ( ) [ 0 ] >= range . s t a r t )
treeNode−>render ( s t a t e ) ;

// e l s e drop , to be drawn by ’ prev ious ’ channel
}
else
{

i f ( l e f t )
cand idate s . push back ( l e f t ) ;

i f ( r i g h t )
cand idate s . push back ( r i g h t ) ;

}
break ;

}
case vmml : : VISIBILITY NONE :

// do nothing
break ;

}
}

model−>endRendering ( s t a t e ) ;
}

6.8.3. Assembly

Like most applications, eqPly can use the default implementation of the frameRead-
back and frameAssemble task methods. Only frameReadback is overwritten for an
optimization. Since eqPly does not need the alpha channel on the destination view,
the output frames are flagged to ignore it, which allows the compressor to drop 25%
of the data during image transfer:
void Channel : : frameReadback ( const u in t 32 t frameID )
{

// OPT: Drop alpha channel from a l l frames during network t ranspor t
const eq : : FrameVector& frames = getOutputFrames ( ) ;
for ( eq : : FrameVector : : c o n s t i t e r a t o r i = frames . begin ( ) ;

i != frames . end ( ) ; ++i )
{

( i )−>setAlphaUsage ( fa l se ) ;
}

eq : : Channel : : frameReadback ( frameID ) ;
}

7. Advanced Features

This section discusses important features not covered by the previous eqPly section.
Where possible, code examples from the Equalizer distribution are used to illustrate
usage of the feature. Its purpose is to provide information on how to address a
typical problem or use case when developing an Equalizer-based application.

7.1. Event Handling

Event handling requires flexibility. On one hand, the implementation differs slightly
for each operating and window system due to conceptual differences in the specific
implementation. On the other hand, each application and widget set has its own
model on how events are to be handled. Therefore, event handling in Equalizer is
customizable at any stage of the processing, to the extreme of making it possible to
disable all event-related code in Equalizer. In this aspect, Equalizer substantially
differs from GLUT, which imposes an event model and hides most of the event
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handling in glutMainLoop. More information on event handling can be found on the
Equalizer website24.

The default implementation provides a convenient, easily accessible event frame-
work, while allowing all necessary customizations. It gathers all events from all node
processes in the main thread of the application, so that the developer only has to im-
plement Config::processEvent to update its data based on the preprocessed, generic
keyboard and mouse events. It is very easy to use and similar to a GLUT-based
implementation.

7.1.1. Threading

Events are received and processed by the pipe thread a window belongs to. For
AGL, Equalizer internally forwards the event from the main thread, where it is
received, to the appropriate pipe thread.

7.1.2. Message Pump

To dispatch events, Equalizer ’pumps’ the native events. On WGL and GLX, this
happens on each thread with windows, whereas on AGL it happens on the main
thread and each pipe thread. By default, Equalizer pumps these events automati-
cally for the application in-between executing task methods.

The method Pipe::useMessagePump can be overridden to return false to not enable
message dispatch for the respective thread.

The method useMessagePump is called by Equalizer during application and pipe
thread initialization (before configInit!) to determine if the pipe’s thread shall
automatically dispatch OS events. For AGL, this affects the node threads and pipe
thread, since the node thread message pump needs to dispatch the events to the
pipe thread event queue.

If the application disables message pumping in Equalizer, it has to make sure the
events are pumped externally, as it often done within external widget sets such as
Qt.

7.1.3. Event Data Flow

Native Event

OSEventHandler

OSWindowEvent

ConfigEvent

eq::Event

OSWindow::
processEvent

Config::
sendEvent

Event Thread Main Thread

Config::
handleEvents

Config::
handleEvent

EventQueue

ConfigEvent

Config::
finishFrame

Native Event

Event

Window::
processEvent

Figure 33: Event Processing

Events are received by an event handler. The
event handler finds the eq::OSWindow associated
to the event. It then creates a generic Event,
which holds the event data in an independent for-
mat. The original native event and this generic
Event form the OSWindowEvent, which is passed
to the concrete OSWindow for processing.

The purpose of the OSWindow processing
method, processEvent, is to perform window-
system specific event processing. For example,
AGLWindow::processEvent calls aglUpdateContext
whenever a resize event is received. For further,
generic processing, the Event is passed on to Win-
dow::processEvent. This Event no longer contains
the native event.

Window::processEvent is responsible for han-
dling the event locally and for translating it into
a generic ConfigEvent. The config events are send
to the application thread using Config::sendEvent.

24see http://www.equalizergraphics.com/documents/design/eventHandling.html
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Events send using Config::sendEvent are queued in the application thread. After a
frame has been finished, Config::finishFrame calls Config::handleEvents. The default
implementation of this method provides non-blocking event processing, that is, it
calls Config::handleEvent for each queued event. By overriding handleEvents, event-
driven execution can easily be implemented.

If the event was processed, processEvent has to return true. If false is returned
to the event handler, the event will be passed to the previously installed, window-
system-specific event handling function.

Figure 33 shows the overall data flow of an event.

7.1.4. Default Implementation

Equalizer provides an AGLEventHandler, GLXEventHandler and WGLEventHandler,
which handle events for an AGLWindowIF, GLXWindowIF and WGLWindowIF, respec-
tively. Figure 34 illustrates the class hierarchy for event processing.

OS-Agnostic Implementation

processEvent
Window

getGLXContext
getXDrawable
processEvent

GLXWindowIF

getAGLContext
getCarbonWindow
getAGLPBuffer
processEvent

AGLWindowIF

getWGLContext
getWGLDC
getWGLWindowHandle
getWGLPBufferHandle
processEvent

WGLWindowIF

processEvent
GLXEventHandler

processEvent
AGLEventHandler

*

1
processEvent
WGLEventHandler

1

1

ResizeEvent resize
PointerEvent pointer
KeyEvent key
Statistic statistic
UserEvent user

Event

XEvent xEvent
GLXWindowEvent

<uses>

<uses>

UINT uMsg
WPARAM wParam
LPARAM lParam

WGLWindowEvent

<uses>

EventRef carbonEv...
AGLWindowEvent

<uses>

OS-Specific Default Implementation

OS-Specific Interface

*

1

Figure 34: UML Diagram for Event Handling
Classes

The concrete implementa-
tion of these window inter-
faces is responsible for setting
up and de-initializing event
handling.

Carbon events issued for
AGL windows are initially
receive by the node main
thread, and automatically
dispatched to the pipe thread.
The pipe thread will dis-
patch the event to the ap-
propriate event handler. One
AGLEventHandler per window
is used, which is created dur-
ing AGLWindow::configInit. The
event handler installs a Car-
bon event handler for all im-
portant events. The event
handler uses an AGLWin-
dowEvent to pass the Car-
bon EventRef to AGLWin-
dowIF::processEvent. During
window exit, the installed
Carbon handler is removed when the window’s event handler is deleted. No event
handling is set up for PBuffers.

GLX uses one X11 Display connection for all windows on a GPU, which is man-
aged by the eq::Pipe. For each thread, one GLXEventHandler is allocated. The
pipe registers the display connection with this per-thread event handler. Events
for windows created using this display connection are automatically received by the
event handler. No per-window event handling setup needs to be done. PBuffers are
handled in the same way as window drawables.

The glX event handler iterates over all windows of the registered pipe to find
the originating GLXWindowIF, which is then used to process the event in a fashion
similar to AGL. The GLXWindowEvent passes the XEvent to GLXWindowIF::process-
Event.

Each WGLWindow allocates one WGLEventHandler when the window handle is
set. The WGLEventHandler passes the native event parameters uMsg, wParam and
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lParam to WGLWindowIF::processEvent as part of the WGLWindowEvent. No event
handling is set up for PBuffers.

Later Equalizer versions will introduce Pipe::processEvent and PipeEvent to com-
municate pipe-specific events, e.g., monitor resolution changes. It is also likely that
an OSPipe abstraction, similar to the OSWindow, will be created to separate the
window system specific code from the eq::Pipe.

7.1.5. Custom Events in eqPixelBench

The eqPixelBench example is a benchmark program to measure the pixel transfer
rates from and to the framebuffer of all channels within a configuration. It uses
custom config events to send the gathered data to the application. It is much
simpler than the eqPly example since it does not provide any useful rendering or
user interaction.

The rendering routine of eqPixelBench in Channel::frameDraw loops through a
number of pixel formats and types. For each of them, it measures the time to
readback and assemble a full-channel image. The format, type, size and time is
recorded in a config event, which is sent to the application.

The ConfigEvent derives from the eq::ConfigEvent structure and has the following
definition:
struct ConfigEvent : public eq : : ConfigEvent
{
public :

enum Type
{

READBACK = eq : : ConfigEvent : : USER,
ASSEMBLE

} ;

ConfigEvent ( )
{

s i z e = s izeof ( ConfigEvent ) ;
}

// channel name i s in user event data
char formatType [ 6 4 ] ;
vmml : : Vector2 i area ;
f loat msec ;

} ;

The Config::sendEvent method transmits an eq::ConfigEvent or derived class to
the application. The ConfigEvent has to be a C-type structure, and its size member
has to be set to the full size of the event to be transmitted. Each event has a type
which is used to identify it by the config processing function.

User-defined types start at eq::ConfigEvent::USER, and the member variable Con-
figEvent::user can be used to store up to EQ USER EVENT SIZE25 bytes. In this
space, the channel’s name is stored. Additional variables are used to transport the
pixel format and type, the size and the time it took for rendering.

On the application end, Config::handleEvent uses the ostream operator for the
derived config event to output these events in a nicely formatted way:
std : : ostream& operator << ( std : : ostream& os , const ConfigEvent event ) ;
. . .
bool Config : : handleEvent ( const eq : : ConfigEvent event )
{

switch ( event−>type )
{

case ConfigEvent : :READBACK:
case ConfigEvent : :ASSEMBLE:

25currently 32 bytes

50



7. Advanced Features

cout << static cast< const ConfigEvent >( event ) << endl ;
return true ;

default :
return eq : : Conf ig : : handleEvent ( event ) ;

}
}

7.2. Thread Synchronization

Equalizer applications use multiple, potentially asynchronous execution threads.
The default execution model is focused on making the porting of existing applica-
tions as easy as possible, as described in Section 5.3. The default, per-node thread
synchronization provided by Equalizer can be relaxed by advanced applications to
gain better performance through higher asynchronicity.

7.2.1. Threads

The application or node main thread is the primary thread of each process and exe-
cutes the main function. The application and render clients initialize the local node
for communications with other nodes, including the server, using Client::initLocal.

Application 

Main Thread

Receiver 

Thread

Pipe Threads

Command 

Thread

Client::initLocal

Config::init

Config::exit

Client::exitLocal

Figure 35: Threads within one node process

During this initialization,
Equalizer creates and man-
ages two threads for commu-
nication, the receiver thread
and the command thread.
Normally no application code
is executed from these two
threads.

The receiver thread man-
ages the network connections
to other nodes and receives
data. It dispatches the re-
ceived data either to the ap-
plication threads, or to the
command thread.

The command thread pro-
cesses internal Equalizer re-
quest from other nodes, for
example during eq::net::Object
mapping. In some special cases the command thread executes application code,
for example when a remote node maps a static or unbuffered object, Ob-
ject::getInstanceData is called from the command thread.

The receiver and command thread are terminated when the application stops
network communications using Client::exitLocal.

During config initialization, one pipe thread is created for each pipe. The pipe
threads execute all render task methods for this pipe, and therefore executes the
application’s rendering code. The pipe threads are terminated during Config::exit.

The rest of this section discusses the thread synchronization between the main
thread and the pipe threads.

7.2.2. Thread Synchronization Models

Equalizer supports three threading models, which can be set programmatically by
the application or through the configuration file format. Applications typically
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hard-code their threading model. The file format is commonly used to change the
threading model for benchmarking and experimentation.

The following thread synchronization models are implemented:

ASYNC: No synchronization happens between render threads, except for synchro-
nizing the finish of frame current-latency. The eqPly and eVolve Equalizer
examples use this threading model, by setting it in Node::configInit. This syn-
chronization model provides the best performance and should be used by all
applications which multi-buffer all non-static, frame-specific data.

DRAW SYNC: Additionaly to the synchronization of the async thread model, all
local render threads are synchronized, so that the draw operations happen
synchronously with the node main loop. This model allows to use the same
database for rendering, and safe modifications of this database are possible
from the node thread, since the pipe threads do not execute any rendering
tasks between frames. This is the default threading model. This threading
model should be used by applications which keep one copy of the scene graph
per node.

LOCAL SYNC: Additionaly to the synchronization of the async thread model, all
local frame operations, including readback, assemble and swap buffer are syn-
chronized with the node main loop. This threading model should be used
by applications which need to access non-buffered, frame-specific data after
rendering, e.g., during Channel::frameAssemble.

Figure 36 illustrates the synchronization and task execution for the thread syn-
chronization models. Please note that the thread synchronization synchronizes all
pipe render threads on a single node with the node’s main thread. The per-node
frame synchronization does not break the asynchronous execution across nodes.

draw

assemble

readback

draw

draw

draw

assemble

readback

draw

assemble

readback

draw

draw

draw

assemble

readback

draw

assemble
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assemble

readback

node unlocked

startFrame: 2

node unlocked

startFrame: 3

startFrame: 1

async local_syncdraw_sync

Figure 36: Async, draw sync and local sync thread synchronization models

7.2.3. DPlex Compounds

DPlex decomposition requires multiple frames to be rendered concurrently. Appli-
cations using the thread synchronization models draw sync (the default) or local sync
have to use one render client process per GPU to benefit from DPlex task decom-
position.
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Non-threaded pipes should not be used for DPlex source and destination channels.
Applications using the local sync thread model can not benefit from DPlex if the
application node uses a DPlex source or destination channel.

Applications using the async thread synchronization model can fully profit from
DPlex using multiple render threads on a multi-GPU system. For these applications,
all render threads run asynchronously and can render different frames at the same
time.

Synchronizing the draw operations between multiple pipe render threads, and
potentially the application thread, breaks DPlex decomposition. At any given time,
only one frame can be rendered from the same process. The speedup of DPlex relies
however on the capability to render different frames concurrently.

If one process per GPU is configured, draw-synchronous applications can scale
the performance using DPlex compounds. The processes are not synchronized with
each other, since each process keeps its own version of the scene data.

7.2.4. Thread Synchronization in Detail

The application has extended control over the task synchronization during a frame.
Upon Config::startFrame, Equalizer invokes the frameStart task methods of the var-
ious entities. The entities unlock all their children by calling startFrame, e.g.,
Node::frameStart has to call Node::startFrame to unlock the pipe threads. Note
that certain startFrame calls, e.g., Window::startFrame, are currently empty since
the synchronization is implicit due to the sequential execution within the thread.

main thread pipe threads

Node::frameStart

Node::startFrame Pipe::frameStart

Node::frameFinish

Node::releaseFrame

Pipe::frameFinish

Pipe::releaseFrame

Node::waitFrameStarted

Node::frameDrawFinish

Pipe(s)::waitFrameLocal

Pipe::frameDrawFinish

Pipe::releaseFrameLocal

draw tasks

compostion tasks

Figure 37: Per-node frame synchronization

Each entity uses waitFrame-
Started to block on the par-
ent’s startFrame, e.g., Pipe::-
frameStart calls Node::wait-
FrameStarted to wait for the
corresponding Node::startFra-
me. This explicit synchro-
nization allows to update
non-critical data before syn-
chronizing with waitFrameS-
tarted, or after unlocking us-
ing startFrame. Figure 37 il-
lustrates this synchronization
model.

At the end of the frame,
two similar sets of synchro-
nization methods are used.
The first set synchronizes the
local execution, while the sec-
ond set synchronizes the global execution.

The local synchronization consists of releaseFrameLocal to unlock the local frame,
and of waitFrameLocal to wait for the unlock. For the default synchronization model
sync draw, Equalizer uses the task method frameDrawFinish which is called on each
resource after the last Channel::frameDraw invocation for this frame. Consequently,
Pipe::frameDrawFinish calls Pipe::releaseFrameLocal to signal that it is done drawing
the current frame, and Node::frameDrawFinish calls Pipe::waitFrameLocal for each of
its pipes to block the node thread until the current frame has been drawn.

Figure 37 illustrates the local frame synchronization.
The second, global synchronization is used for the frame completion during Con-

fig::finishFrame, which causes frameFinish to be called on all entities, passing the
oldest frame number, i.e., frame current-latency. The frameFinish task methods
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have to call releaseFrame to signal that the entity is done with the frame. The re-
lease causes the parent’s frameFinish to be invoked, which is synchronized internally.
Once all Node::releaseFrame have been called, Config::finishFrame returns.

Pipe(s)Application Node

Config::startFrame

Pipe(s)

Node::frameStart

Server

Config::finishFrame

Render ClientApplication

Node::startFrame
Node::frameStart

Node::startFrame Pipe::frameStart
Config::beginFrame

Pipe::frameStart

Pipe::startFrame

Node::frameFinish
Node::releaseFrame

Pipe::frameFinish
Pipe::releaseFrame

Node::waitFrameStarted

non-threaded
draw tasks

Node::frameDrawFinish
Pipe(s)::waitFrameLocal

draw tasks

Pipe::frameDrawFinish
Pipe::releaseFrameLocal

non-threaded
assemble tasks

assemble tasks

Pipe::startFrame
Node::waitFrameStarted

Pipe::frameFinish
Pipe::releaseFrame

draw tasks

Pipe::frameDrawFinish
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Node::frameFinish
Node::releaseFrame

non-threaded
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Node::frameDrawFinish
Pipe(s)::waitFrameLocal

non-threaded
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Figure 38: Synchronization of frame tasks

Figure 38 outlines the synchronization for the application, node and pipe classes
for an application node and one render client when using the default draw sync
thread model. Please note that Config::finishFrame does block until the current
frame has been released locally and until the frame current - latency has been released
by all nodes. The window and channel synchronization are similar and omitted for
simplicity.

It is absolutely vital for the execution that Node::startFrame and Node::releaseFra-
me are called, respectively. The default implementations of the node task methods
do take care of that.

7.3. OpenGL Extension Handling

Equalizer uses GLEW26 for OpenGL extension handling, particularly the GLEW
MX implementation providing multi-context support.

Each eq::Window has a GLEWContext. This context can be obtained by using
glewGetContext on the window or channel. GLEW MX uses this function to dispatch
the functions to the correct context. Equalizer (re-)initializes the GLEW context
whenever a new OpenGL context is set on the window.

Extended OpenGL functions called from a window or channel instance can be
called directly. GLEW will call the object’s glewGetContext to obtain the correct
context:
void eqPly : : Channel : : drawModel ( const Model model )
{

. . .
glUseProgram ( program ) ;
. . .

}

Functions called from another place need to define a macro or function glewGet-
Context that returns the pointer to the GLEWContext of the appropriate window:
// s t a t e has GLEWContext from window
#define glewGetContext s t a t e . glewGetContext

/ Set up render ing o f the l e a f nodes . /

26http://glew.sourceforge.net
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void VertexBuf fe rLea f : : setupRendering ( VertexBuf f e rState& state ,
GLuint data ) const

{
. . .
g lB indBuf f e r ( GL ARRAY BUFFER, data [VERTEX OBJECT] ) ;
g lBuf fe rData ( GL ARRAY BUFFER, vertexLength s izeof ( Normal ) ,

& g loba lData . normals [ v e r t e xS t a r t ] , GL STATIC DRAW ) ;
. . .

}

7.4. Advanced Window Initialization

This section explains window initialization in detail. It discusses in detail the han-
dling of the different window systems. Window systems are integrated through
the OSWindow interface, which externalizes the details of the windowing API from
the eq::Window implementation and facilitates the integration with new windowing
API’s and custom applications.

Equalizer provides sample implementations for the supported window systems.
These sample implementations are intended to be sub-classed and various steps in
the window initialization can be overwritten and customized.

An application typically choses to subclass the sample implementation if only
minor tweaks are needed for integration. For major changes or new window systems,
it is often easier to subclass directly from OSWindow and implement the abstract
methods of this interface class.

The method Window::configInitOSWindow is used to instantiate and initialize the
OSWindow implementation during config initialization. After a successful OSWin-
dow initialization, Window::configInitGL is called for the generic OpenGL state setup.

Since window initialization is notoriously error-prone and hard to debug, the
sample implementation propagates the reason for errors from the render clients back
to the application. The Pipe and Window classes have a setErrorMessage method,
which is used to set an error string. This string is passed to the Config instance on
the application node, where it can be retrieved using getErrorMessage.

The sample implementations AGLWindow, GLXWindow and WGLWindow all have
similar, override-able methods for all sub-tasks. This allows partial customization,
without the need of rewriting tedious window initialization code, e.g., the OpenGL
pixel format selection.

7.4.1. Drawable Configuration

OpenGL drawables have a multitude of buffer modes. A drawable might be single-
buffered, double-buffered or quad-buffered, have auxiliary image planes such as
stencil, accumulation and depth buffer or multisampling.

The OpenGL drawable is configured using window attributes. These attributes
are used by the method choosing the pixel format (or visual in X11 speak) to select
the correct drawable configuration.

Window attributes can either be configured through the configuration file (see
Appendix A), or programmatically. In the configuration file, modes are selected
which are not application-specific, for example stereo formats for active stereo dis-
plays.

Applications which require certain drawable attributes can set the corresponding
window attribute hint during window initialization. The Equalizer volume rendering
example, eVolve, is such an example. It does need alpha planes for rendering and
compositing. The window initialization of eVolve sets the attribute before calling
the default initialization method of Equalizer:
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bool eVolve : : Window : : c o n f i g I n i t ( const u in t 32 t i n i t ID )
{

// Enforce a lpha channel , s ince we need one fo r render ing
s e t IA t t r i bu t e ( IATTR PLANES ALPHA, 8 ) ;

return eq : : Window : : c o n f i g I n i t ( i n i t ID ) ;
}

7.4.2. AGL Window Initialization

AGL initialization happens in three steps: choosing a pixel format, creating the
context and creating a drawable.

Most AGL and Carbon calls are not thread-safe. The Equalizer methods calling
these functions use Global::enterCarbon and Global::leaveCarbon to protect the API
calls. Please refer to Section 6.6.3 for more details.

The pixel format is chosen based on the window’s attributes. Some attributes set
to auto, e.g., stereo, cause the method first to request the feature and then to back off
and retry if it is not available. The pixel format returned by chooseAGLPixelFormat
has to be destroyed using destroyAGLPixelFormat. When no matching pixel format is
found, chooseAGLPixelFormat returns 0 and the AGL window initialization returns
with a failure.

The context creation also uses the global Carbon lock. Furthermore, it sets
up the swap buffer synchronization with the vertical retrace, if enabled by the
corresponding window attribute hint. Again the window initialization fails if the
context could not be created.

The drawable creation method configInitAGLDrawable calls either configInitAGL-
Fullscreen, configInitAGLWindow or configInitAGLPBuffer

The top-level AGL window initialization code therefore looks as follows:
bool AGLWindow : : c o n f i g I n i t ( )
{

AGLPixelFormat pixelFormat = chooseAGLPixelFormat ( ) ;
i f ( ! pixelFormat )

return fa l se ;

AGLContext context = createAGLContext ( pixelFormat ) ;
destroyAGLPixelFormat ( pixelFormat ) ;
setAGLContext ( context ) ;

i f ( ! context )
return fa l se ;

return configInitAGLDrawable ( ) ;
}

7.4.3. GLX Window Initialization

GLX initialization is very similar to AGL initialization. Again the steps are: choose
visual (pixel format), create OpenGL context and then create drawable. The only
difference is that the data returned by chooseXVisualInfo has to be freed using XFree:
bool GLXWindow : : c o n f i g I n i t ( )
{

XVisual Info v i s u a l I n f o = chooseXVisua l In fo ( ) ;
i f ( ! v i s u a l I n f o )

return fa l se ;

GLXContext context = createGLXContext ( v i s u a l I n f o ) ;
setGLXContext ( context ) ;

i f ( ! context )
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return fa l se ;

const bool su c c e s s = configInitGLXDrawable ( v i s u a l I n f o ) ;
XFree ( v i s u a l I n f o ) ;

i f ( su c c e s s && ! xDrawable )
{

window−>setErrorMessage (
” configInitGLXDrawable did not s e t a X11 drawable ” ) ;

return fa l se ;
}

return su c c e s s ;
}

7.4.4. WGL Window Initialization

The WGL initialization requires another order of operations compared to AGL or
GLX. The following functions are used to initialize a WGL window:

1. initWGLAffinityDC is used to set up an affinity device context, which might be
needed for window creation. The WGL window tracks potentially two device
context handles, one for OpenGL context creation (the affinity DC), and one
for swapBuffers (the window’s DC).

2. chooseWGLPixelFormat chooses a pixel format based on the window attributes.
If no device context is given, it uses the system device context. The chosen
pixel format is set on the passed device context.

3. configInitWGLDrawable creates the drawable. The device context passed to
configInitWGLDrawable is used to query the pixel format and is used as the
device context for creating a PBuffer. If no device context is given, the display
device context is used. On success, it sets the window handle. Setting a
window handle also sets the window’s device context.

4. createWGLContext creates an OpenGL rendering context using the given de-
vice context. If no device context is given, the window’s device context is
used. This function does not set the window’s OpenGL context.

The full configInitWGL task method, including error handling and cleanup, looks
as follows:
bool WGLWindow : : c o n f i g I n i t ( )
{

i f ( ! initWGLAffinityDC ( ) )
{

window−>setErrorMessage ( ”Can ’ t c r e a t e a f f i n i t y dc” ) ;
return fa l se ;

}

int pixelFormat = chooseWGLPixelFormat ( ) ;
i f ( pixelFormat == 0 )
{

exitWGLAffinityDC ( ) ;
return fa l se ;

}

i f ( ! configInitWGLDrawable ( pixelFormat ) )
{

exitWGLAffinityDC ( ) ;
return fa l se ;

}
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i f ( ! wglDC )
{

exitWGLAffinityDC ( ) ;
setWGLDC( 0 , WGL DC NONE ) ;
window−>setErrorMessage (

”configInitWGLDrawable did not s e t a WGL drawable ” ) ;
return fa l se ;

}

HGLRC context = createWGLContext ( ) ;
i f ( ! context )
{

con f i gEx i t ( ) ;
return fa l se ;

}

setWGLContext ( context ) ;
makeCurrent ( ) ;
i n i tG lew ( ) ;

i f ( g e t IAt t r i bu t e ( Window : : IATTR HINT SWAPSYNC ) != AUTO )
{

i f ( WGLEW EXT swap control )
{

// s e t vsync on/ o f f
const GLint vsync =

( ge t IAt t r i bu t e ( Window : : IATTR HINT SWAPSYNC )==OFF ) ? 0 : 1 ;
wglSwapIntervalEXT ( vsync ) ;

}
else

EQWARN << ”WGLEW EXT swap control not supported , i gno r i ng window ”
<< ”swapsync h int ” << std : : endl ;

}

i f ( ! joinNVSwapBarrier ( ) )
{

window−>setErrorMessage ( ” Jo in ing NV swap group f a i l e d ” ) ;
return fa l se ;

}

i f ( g e t IAt t r i bu t e ( Window : : IATTR HINT DRAWABLE ) == FBO )
return conf igInitFBO ( ) ;

return true ;
}

7.5. Head Tracking

The eqPly example contains rudimentary support for head tracking to show how
head tracking can be integrated with Equalizer. Support for a wide range of tracking
devices is not within the scope of Equalizer. Other open source and commercial
implementations cover this functionality sufficiently and can easily be integrated
with Equalizer.

An Equalizer configuration has a vector of observers. Each observer has its own
head matrix and eye separation for tracking. In eqPly, all observers are updated
with the same head matrix. A typical application would assign different tracking
data to different observers.

Figure 39(a) illustrates a monoscopic view frustum. The viewer is positioned at
the origin of the global coordinate system, and the frustum is completely symmetric.
This is the typical view frustum for non-stereoscopic applications.

In stereo rendering, the scene is rendered twice, with the two frusta ’moved’ by
the distance between the eyes, as shown in Figure 39(b).
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Figure 39: Monoscopic, Stereoscopic, Tracked and HMD frusta

In immersive visualization, the observer is tracked in and the view frusta are
adapted to the viewer’s position and orientation, as shown in Figure 39(c). The
transformation origin → viewer is set by the application using Config::setHead-
Matrix, which is used by the server to compute the frusta. The resulting off-axis
frusta are positioned using the channel’s head transformation, which can be re-
trieved using Channel::getHeadTransform.

For head-mounted displays (HMD), the tracking information is used to move
the frusta with the observer, as shown in Figure 39(d). This results in different
projections compared to normal tracking with fixed projection screens.

7.6. Layout API

The Layout API provides an abstraction for render surfaces (Canvas and Segment)
and the arrangement of rendering areas on them (Layout and View). Its function-
ality has been described in Section 3.7 and Section 3.8. This section focuses on how
to use the Layout API programmatically.

The application has read access to all canvases, segment, layouts and views of the
configuration. The render client has access to the current view in the channel task
methods. The layout entities can be sub-classed using the NodeFactory. Currently
the layout of a canvas and the frustum of a view can be changed at runtime.

7.6.1. Subclassing and Data Distribution

Layout API entities (Canvas, Segment, Layout, View) are sub-classed like all other
Equalizer entities using the NodeFactory. Equalizer registers the master instance of
these entities on the application node, so that the application can change mutable
parameters and distribute its own data to the render clients. Figure 40 shows the
UML class hierarchy for the eqPly::View.

The render clients can access a slave instance of the view using Channel::getView.
When called from one of the frame task methods, this method will return the view
of the current destination channel for which the task method is executed. Otherwise
it returns the channel’s native view, if it has one. Only destination channels of an
active canvas have a native view.

Equalizer commits dirty layout entities at the beginning of each Config::startFrame,
and synchronizes the slave instances on the render clients correctly with the current
frame.

The most common entity to subclass is the View, since the application amends
it by view-specific data. The view, like all other layout entities, is indirectly sub-
classed from eq::Object through eq::Frustum. The design and usage of eq::Object is
explained in Section 8.7.1.

In eqPly, the application-specific data is the model identifier. A new dirty bit for
the model is defined, and the model identifier is serialized when requested:
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/ The changed par t s o f the view . /
enum Dir tyBi t s
{

DIRTY MODEL = eq : : View : :DIRTY CUSTOM << 0 ,
} ;

void View : : s e r i a l i z e ( eq : : net : : DataOStream& os , const u in t 64 t d i r t yB i t s )
{

eq : : View : : s e r i a l i z e ( os , d i r t yB i t s ) ;
i f ( d i r t yB i t s & DIRTY MODEL )

os << modelID ;
}

void View : : d e s e r i a l i z e ( eq : : net : : DataIStream& is , const u in t 64 t d i r t yB i t s )
{

eq : : View : : d e s e r i a l i z e ( i s , d i r t yB i t s ) ;
i f ( d i r t yB i t s & DIRTY MODEL )

i s >> modelID ;
}

void View : : setModelID ( const u in t 32 t id )
{

modelID = id ;
s e tD i r ty ( DIRTY MODEL ) ;

}

7.6.2. Dynamic Layout Switch

The application can use a different layout on a canvas. This will cause the running
entities to be updated on the next frame. At a minimum, this means the channels
involved in the last layout on the canvas are de-initialized, that is configExit and
NodeFactory::releaseEntity is called, and channels involved in the new layout are
initialized. If a layout does not cover fully a canvas, the layout switch can also
cause the (de-)initialization of windows, pipes and nodes.

Due to the entity (de-)-initialization and the potential need to initialize view-
specific data, e.g., a model, a layout switch is relatively expensive and will stall
eqPly for about a second.

Initializing an entity can fail. If that happens, the server will exit the whole
configuration, and send an EXIT event to the application node. The exit event will
cause the application to exit, since it resets the config’s running state.

7.6.3. View Frustum Update

setModelID
serialize
deserialize

_modelID
DIRTY_MODEL

eqPly::View

getViewport
serialize
deserialize

_viewport
DIRTY_VIEWPORT

eq::View

getWall
setWall
getProjection
setProjection
serialize
deserialize

_wall
_projection
DIRTY_WALL
DIRTY_PROJECTION

eq::Frustum

getName
setName
serialize
deserialize

_name
DIRTY_NAME

eq::Object

...
eq::net::Object

Figure 40: UML hierarchy of
eqPly::View

Changing view frustum parameters is typically
done for non-fullscreen application windows and
multi-view layouts, where the rendering is not
meant to be viewed in real-world size in an immer-
sive environment. A typical use case is changing
the field-of-view of the rendering.

A view is derived from eq::Frustum (Figure 40),
and the application process can set the wall or
projection parameters at runtime. For a descrip-
tion of wall and projection parameters please refer
to Section 3.10.3. The new data will be effective
for the next frame.

The frustum of a view overrides the underlying
frustum of the segments. The frustum of a view
does not typically correspond to a physical pro-
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jection, and can therefore be changed at runtime. The frustum of a segment does
however correspond to a physical projection, and is therefore immutable.

The default Equalizer event handling is using the view API to maintain the aspect
ratio of destination channels after a window resize. Without updating the wall or
projection description, the rendering would become distorted.

Equalizer
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ApplicationRender Client

Window::processEvent

w
in

do
w

re
si

ze
d

Win::setPixelViewport

Channel::processEvent

Config::handleEvent

View::handleEvent

setWall

setProjection

Frustum Update

Config::sendEvent

(VIEW_RESIZE)

Figure 41: Event Flow during a View Update

When a window is resized,
a CHANNEL RESIZE event is
eventually generated. If the
corresponding channel has
a view, Channel::processEvent
sends a VIEW RESIZE event
to the application. This event
contains the identifier of the
view.

The config event is dis-
patched to View::handleEvent.
Based on the original size and
wall or projection description

of the view, a new wall or projection is computed, keeping the aspect ratio and
the height of the frustum constant. This new frustum is automatically applied by
Equalizer at the next config frame.

Figure 41 shows a sequence diagram of such a view update.

7.7. Image Compositing for Scalable Rendering

Two task methods are responsible for collecting and compositing the result image
during scalable rendering. Scalable rendering is a use case of parallel rendering,
when multiple channels are contributing to a single view.

The source channels producing one or more outputFrames use Channel::frame-
Readback to read the pixel data from the frame buffer. The channels receiving one
or multiple inputFrames use Channel::frameAssemble to assemble the pixel data into
the framebuffer. Equalizer takes care of the network transport of frame buffer data
between nodes.

Normally the programmer does not need to interfere with the image compositing.
Changes are sometimes required at a high level, for example to order the input
frames or to optimize the readback. The following sections describe the image
compositing API in Equalizer.

7.7.1. Compression Plugins

Compression plugins allow the creation of runtime-loadable modules for image com-
pression. Equalizer will search predefined directories during eq::init for dynamic
shared objects (DSO) containing compression libraries (EqualizerCompressor*.dll
on Windows, libeqCompressor*.dylib on Mac OS X, libeqCompressor*.so on Linux).

The interface to a compression DSO is a C API, which allows to maintain binary
compatibility across Equalizer versions. Furthermore, the definition of an interface
facilitates the creation of new compression codecs for developers.

Please refer to the Equalizer API documentation on the website for the full spec-
ification for compression plugins. The Equalizer DSO doubles as a compression
plugin and implements a set of compression engines, which can be used as a refer-
ence implementation.

Each compression DSO may contain multiple compression engines. The number
of compressors in the DSO is queried by Equalizer using EqCompressGetNumCom-
pressors.
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For each compressor, EqCompressorGetInfo is called to retrieve the information
about the compressor. The information contains the API version the DSO was
written against, a unique name of the compressor, the type of input data accepted
as well as information about the compressor’s speed, quality and compression ratio.

Each image transported over the network allocates its own compressor or decom-
pressor instance. This allows compressor implementations to maintain information
in a thread-safe manner. The handle to a compressor or decompressor instance is a
void pointer, which typically hides a C++ object instantiated by the compression
DSO.

A unit test is delivered with Equalizer which runs all compressors against a set
of images and provides performance information to calculate the compressor char-
acteristics.

7.7.2. Parallel Direct Send Compositing

To provide a motivation for the design of the image compositing API, the direct
send parallel compositing algorithm is introduced in this section. Other parallel
compositing algorithms, e.g. binary-swap, can also be expressed through an Equal-
izer configuration file.
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Figure 42: Direct Send Compositing

The main idea behind di-
rect send is to parallelize
the costly recomposition for
database (sort-last) decom-
position. With each ad-
ditional source channel, the
amount of pixel data to
be composited grows linearly.
When using the simple ap-
proach of compositing all
frames on the destination
channel, this channel quickly
becomes the bottleneck in the
system. Direct send dis-
tributes this workload evenly
across all source channels,
and thereby keeps the com-
positing work per channel
constant.

In direct send compositing,
each rendering channel is also
responsible for the sort-last composition of one screen-space tile. He receives the
framebuffer pixels for his tile from all the other channels. The size of one tile
decreases linearly with the number of source channels, which keeps the total amount
of pixel data per channel constant.

After performing the sort-last compositing, the color information is transferred
to the destination channel, similarly to a 2D (sort-first) compound. The amount
of pixel data for this part of the compositing pipeline also approaches a constant
value, i.e., the full frame buffer.

Figure 42 illustrates this algorithm for three channels. The Equalizer website
contains a presentation27 explaining and comparing this algorithm with the binary-
swap algorithm.

The following operations have to be possible to perform this algorithm:

27http://www.equalizergraphics.com/documents/EGPGV07.pdf
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Selection of color and/or depth frame buffer attachments

Restricting the read-back area to a part of the rendered area

Positioning the pixel data correctly on the receiving channels

Furthermore it should be possible for the application to implement a read back
of only the relevant region of interest, that is, the 2D area of the framebuffer actu-
ally updated during rendering. This optimization will be fully supported by later
versions of Equalizer.

7.7.3. Frame, Frame Data and Images

An eq::Frame references an eq::FrameData. The frame data is the object connecting
output with input frames. Output and input frames with the same name within
the same compound tree will reference the same frame data.

The frame data is a holder for images and additional information, such as output
frame attributes and pixel data availability.

An eq::Image holds a two-dimensional snapshot of the framebuffer and can contain
color and/or depth information.

Frame

Frame

Offset

FrameData

FrameData

PVP

Image

Image

Image

PVP

Figure 43: Hierarchy of assembly classes

The frame synchronization
through the frame data al-
lows the input frame to wait
for the pixel data to become
ready, which is signaled by
the output frame after read-
back.

Furthermore, the frame
data transports the inherited
range of the output frame’s
compound. The range can
be used to compute the as-
sembly order of multiple in-
put frames, e.g., for sorted-
blend compositing in volume
rendering applications.

Readback and assemble op-
erations on frames and im-
ages are designed to be asyn-
chronous. They have a start and finish method for both readback and assemble
to allow the initiation and synchronization of the operation. Currently, only syn-
chronous readback and assembly using glReadPixels and glDrawPixels is implemented
in the respective start method of the image. Later versions of Equalizer will imple-
ment asynchronous pixel transfers.

The offset of input and output frames characterizes the position of the frame data
relative to the framebuffer, that is, the window’s lower-left corner. For output
frames this is the position of the channel relative to the window.

For output frames, the frame data’s pixel viewport is the area of the frame buffer
to read back. It will transport the offset from the source to the destination channel,
that is, the frame data pixel viewport for input frames position the pixel data on
the destination. This has the effect that a partial framebuffer readback will end up
in the same place in the destination channels.

The image pixel viewport signifies the region of interest that will be read back.
The default readback operation reads back one image using the full pixel viewport
of the frame data.

Figure 43 illustrates the relationship between frames, frame data and images.
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7.7.4. The Compositor

The Compositor class gathers a set of static functions which implement the various
compositing algorithms and low-level optimizations. Figure 44 provides a top-down
functional overview of the various compositor functions.
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Figure 44: Functional diagram of the compositor

On a high level, the com-
positor combines multiple in-
put frames using 2D tiling,
depth-compositing for polyg-
onal data or sorted, alpha-
blended compositing for semi-
transparent volumetric data.
These operations composite
either directly all images on
the GPU, or use a CPU-based
compositor and then trans-
fer the pre-integrated result
to the GPU. The high-level
entry points automatically
select the best algorithm.
The CPU-based compositor
uses, based on availability,
OpenMP and the Paracomp
compositing library to accel-
erate its operation.

On the next lower level,
the compositor provides func-
tionality to composite a sin-
gle frame, either using 2D
tiling (possibly with blending
for alpha-blended composit-
ing) or depth-based com-
positing.

The per-frame compositing
in turn relies on the per-
image compositing functionality, which automatically decides on the algorithm to
be used (2D or depth-based). The concrete per-image assembly operation uses
OpenGL operations to composite the pixel data into the framebuffer, potentially
using GLSL for better performance.

7.7.5. Custom Assembly in eVolve

The eVolve example is a scalable volume renderer. It uses 3D texture-based volume
rendering, where the 3D texture is intersected by view-aligned slices. The slices
are rendered back-to-front and blended to produce the final image, as shown in
Figure 4528.

When using 2D (sort-first) or stereo decompositions, no special programming is
needed to achieve good scalability, as eVolve is mostly fill-limited and therefore
scales nicely in these modes.

The full power of scalable volume rendering is however in DB (sort-last) com-
pounds, where the full volume is divided into separate bricks. Each of the bricks is
rendered like a separate volume. For recomposition, the RGBA frame buffer data
resulting from these render passes then has to be assembled correctly.

28Volume Data Set courtesy of: SFB-382 of the German Research Council (DFG)
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View

Direction

Figure 45: Volume Rendering
using 3D Textures

Conceptually, the individual volume bricks of
each of the source channels produces pixel data
which can be handled like one big ’slice’ through
the full texture. Therefore they have to be blen-
ded back-to-front in the same way as the slice
planes are blended during rendering.

DB compounds have the advantage of scaling
any part of the volume rendering pipeline: tex-
ture and main memory (smaller bricks for each
channel), fill rate (less samples per channel) and
IO bandwidth for time-dependent data (less data
per time step and channel). Since the amount of
texture memory needed for each node decreases
linearly, they make it possible to render data sets
which are not feasible to visualize with any other
approach.

For recomposition, the 2D frame buffer con-
tents are blended to form a seamless picture. For correct blending, the frames are
ordered in the same back-to-front order as the slices used for rendering, and use
the same blending parameters. Simplified, the frame buffer images are ‘thick’ slices
which are ‘rendered’ by writing their content to the destination frame buffer using
the correct order.

For orthographic rendering, determining the compositing order of the input frames
is trivial. The screen-space orientation of the volume bricks determines the order
in which they have to be composited. The bricks in eVolve are created by slic-
ing the volume along one dimension. Therefore the range of the resulting frame
buffer images, together with the sorting order, is used to arrange the frames during
compositing. Figure 47(a) shows this composition for one view.

Figure 46: Result of Fig-
ure 47(b)

Finding the correct assembly order for perspec-
tive frusta is more complex. The perspective dis-
tortion invalidates a simple orientation criteria
like the one used for orthographic frusta. For the
view and frustum setup shown in Figure 47(b)29
the correct compositing order is 4-3-1-2 or 1-4-3-
2.

To compute the assembly order, eVolve uses the
angle between the origin→ slice vector and the
near plane, as shown in Figure 47(b). When the
angle becomes greater than 90 , the compositing
order of the remaining frames has to be changed.
The result image of this composition naturally
looks the same as the volume rendering would
when rendered on a single channel. Figure 46
shows the result of the composition from Fig-
ure 47(b).

The assembly algorithm described in this section also works with parallel com-
positing algorithms such as direct-send.

29Volume Data Set courtesy of: AVS, USA
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Figure 47: Back-to-Front Compositing for Orthogonal and Perspective Frusta

7.8. Statistics

7.8.1. Statistics Gathering

Statistics are measured in milliseconds since the configuration was initialized. On
each node, the global configuration clock is synchronized with the server clock. Each
statistic event records the originator’s (channel, window, frame or config) unique
identifier.

Figure 48: Statistics for a two-node 2D compound

Statistics are enabled per
entity using an attribute hint.
The hint determines how pre-
cise the gathered statistics
are. When set to fastest,
the per-frame clock is sam-
pled directly when the event
occurs. When set to nicest,
all OpenGL commands will
be finished before sampling
the event. This incurs a per-
formance penalty, but gives
more correct results. The de-
fault setting is fastest in re-
lease builds, and nicest in debug builds.

The events are processed by the channel’s and window’s processEvent method.
The default implementation sends these events to the config using Config::sendEvent,
as explained in Section 7.1. When the default implementation of Config::handleEvent
receives the statistics event, it sorts the event per frame and per originator. When
a frame has been finished, the events are pushed to the local (app-)node for visual-
ization.

Figure 48 shows the visualization of statistics events in an overlay30.

7.8.2. Statistics Overlay

The Equalizer examples render a statistics overlay using the gathered statistics
events directly before Window::swapBuffers. Statistics are toggled on and off using
303D model courtesy Cyberware, Inc.
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the ’s’ key. The overlay rendering method, Channel::drawStatistics, can be called
directly by any application to render the overlay. It can also be overwritten by a
custom implementation.

Figure 49 shows a detail view of Figure 48. The statistics shown are for a two-
node 2D compound. The destination channel is on the appNode and contributes to
the rendering.

Figure 49: Detail of the Statistics from Figure 48.

This configuration executes two Channel::frameDraw tasks, one Channel::frame-
Readback task on the remote node, one Channel::frameAssemble task on the local
node, as well as frame transmission and compression.

The X axis is the time. One pixel on the screen corresponds to a given time unit,
here one millisecond per pixel. The scale is zoomed dynamically to powers-of-ten
milliseconds to fit the statistics into the available viewport. This allows easy and
accurate evaluations of bottlenecks or misconfigurations in the rendering pipeline.
The scale of the statistics is printed.

The rightmost pixel is the most current time. On the Y axis are the entities:
channels, windows, frames and the config. The upper channel is the local chan-
nel since it executes frameAssemble, and the lower channel is the remote channel,
executing frameReadback.

The draw time has been artificially inflated by using immediate mode rendering
to provide more expressive statistics.

To facilitate the understanding, older frames are gradually grayed out. The right-
most, current frame is brighter than the frame-before-last.

The configuration used has a latency of one frame. Consequently, the execution
of two frames overlaps. This can be observed in the early execution of the remote
channel’s frameDraw, which starts while the local channel is still assembling the
previous frame.

The beginning of a frame is marked by a vertical green line, and the end of a frame
by a vertical gray line. These lines are also attenuated. The brightness and color
matches the event for Config::startFrame and Config::finishFrame, respectively. The
event for startFrame is typically not visible, since it takes less than one millisecond to
execute. If no idle processing is done by the application, the event for finishFrame
occupies a full frame, since the config is blocked here waiting for the frame to
complete.

In the above example, the local channel finishes drawing the frame early, and
therefore spends a considerable amount of time waiting for the input frame from
the remote channel. These wait events, rendered red, are a sub-event of the yellow
frameAssemble task.

The frame statistics provide information on the image transmission for scalable
rendering. They are grouped per frame, not per node, that is, the transmit and
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compress part are executed by one node and the receive by another, even though the
statistics are drawn in the same line. The decompression time is part of the receive
statistic. The total compression ratio is printed with each compression statistic, in
this case the image has been compressed to 11% of its original size.

The white Window::swapBuffers task might also take also a long time, since the
execution of the swap buffer is locked to the vertical retrace of the display, and
enforced by glFinish before sampling the end time of the event. In release builds,
this does not happen and all OpenGL commands are pipelined with the execution
on the CPU.

Note that the remote source window does not execute the swapBuffers in this
configuration, since it is a single-buffered PBuffer.

8. The Network Layer

The Equalizer networking layer provides a peer-to-peer communication infrastruc-
ture. It is used by Equalizer to communicate between the application node, the
server and the render clients. It can also be used by applications to implement
distributed processing independently or complementary to the core Equalizer func-
tionality.

The network layer is implemented in the eq::net namespace. It provides layered
functionality, which provide higher level functionality for the programmer. The
main primitives in the network layer are:

Connection A stream-oriented point-to-point communication line. Different imple-
mentations of a connection exist.

Node The abstraction of a process in the cluster. Nodes communicate with each
other using connections.

Session Provides unique identifiers and object mapping to a set of nodes.

Object Provides object-oriented data distribution of C++ objects between nodes
within a session.

8.1. Connections

The eq::net::Connection is the basic primitive used for communication between pro-
cesses in Equalizer. It provides a stream-oriented communication between two end-
points.

A connection is either closed, connected or listening. A closed connection cannot
be used for communications. A connected connection can be used to read or write
data to the communication peer. A listening connection can accept connection
requests.

An eq::net::ConnectionSet is used to manage multiple connections. The typical
use case is to have one or more listening connections for the local process, and a
number of connected connections for communicating with other processes.

The connection set is used to select one connection which requires some action.
This can be a connection request on a listening connection, pending data on a
connected connection or the notification of a disconnect.

The connection and connection set can be used by applications to implement
other network-related functionality, e.g., to communicate with a sound server on a
different machine.
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8.2. Packet Handling

Nodes, sessions and objects communicate using packets derived from eq::net::Packet.
The basic packet dispatch and handling is implemented in the eq::net::Base class,
from which eq::net::Node, eq::net::Session and eq::net::Object is sub-classed.

The network base class allows the registration of a packets with a dispatch queue
and an invocation method. Each packet has a command identifier, which is used to
identify the registered queue and method. The method dispatchCommand pushes
the packet to the registered queue, whereas the method invokeCommand calls the
registered command function.

A command function groups the method and this pointer, allowing to call a C++
method on a concrete instance. If no queue is registered for a certain command,
dispatchCommand directly calls the registered command function.

This dispatch and invocation functionality is used within Equalizer to dispatch
commands from the receiver thread to the appropriate node or pipe thread, and
then to invoke the command when it is processed by these threads.

8.3. Nodes

The eq::net::Node is the abstraction of one process in the cluster. Each node has a
unique identifier, based on the UUID standard31. This identifier is used to address
nodes, e.g., to query connection information to connect to the node. Nodes use
connections to communicate with each other by sending packets sub-classed from
eq::net::NodePacket.

Nodes, like connections, are either in the closed, listening or connected state. A
listening node uses one or more listening connections in conjunction with a con-
nection set to wait for data or connection requests. For each connection request, a
connection and node are created to represent this node on the local machine. This
node is in the connected state, and its connection is added to the connection set of
the listening node.
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Figure 50: Communication between two nodes

Figure 50 shows the com-
munication between two nodes.
The nodes in the listen-
ing state also have a listen-
ing connection, which is not
shown in the Figure for com-
plexity reasons.

When the remote node
sends a packet, the listening
node receives the packet and
dispatches it from the receiver
thread using the method dispatchCommand. The default implementation knows how
to dispatch packets of type node, session or object. Applications can define custom
data types for packets, and then have to extend dispatchCommand to handle these
custom data types.

Node packets are directly dispatched using Base::dispatchCommand. For session
and object packets, the appropriate session is found and Session::dispatchCommand
will dispatch the packet.

If dispatchCommand returns false, the packet will be re-dispatched later. This is
used if an object has not been mapped locally, and therefore the packet could not
be dispatched.

If an application wants to extend communication on the node level, it can either
define its own datatype for packets, or to define custom node packets. Packets with
31http://en.wikipedia.org/wiki/Universally Unique Identifier
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a custom datatype are handled by overriding Node::dispatchCommand. Custom
node packets can use any command greater than CMD NODE CUSTOM as the
packet command. By registering a eq::net::CommandFunc for these commands, the
eq::net::Base dispatch and invoke mechanism can be used automatically.

8.4. Session

The eq::net::Session gathers provides higher-level functionality to a set of nodes.
The master instance of a session is registered to a node, which makes this node the
session server and assigns a node-unique identifier to the session. All other nodes
map their instance of the session to their local listening node using the session’s
identifier. One given node can participate in any number of sessions, both as master
and slave. This allows the flexible usage of sessions to group different aspects of an
application.

A session provides the facilitate to allocate session-unique identifiers. These iden-
tifiers can be used by the application to uniquely address data within the cluster.
They are also used by the session to address distributed objects, which are described
in the following section.
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Figure 51: Communication between two Sessions

Sessions instances can com-
municate to each other di-
rectly using an eq::net::Ses-
sionPacket, which is derived
from the NodePacket and ex-
tends it by the session iden-
tifier. The session ID is used
by the node to dispatch the
packet to the session.

The session, similar to
the node, uses the meth-
ods dispatchCommand and
invokeCommand to dispatch
and execute packets using ei-
ther the eq::net::Base class for session packets or to dispatch and invoke object
packets on the appropriate eq::net::Object. Application developers can use this
mechanism by creating custom session packets with a command greater than
CMD SESSION CUSTOM and registering a command function for these commands.

8.5. Object

Distributed objects provide powerful, object-oriented data distribution for C++
objects. Their functionality and an example use case for parallel rendering has
been described in Section 6.3.

The master instance of an eq::net::Object is registered with a session, which assigns
a session-unique identifier to the object. Using this identifier, other nodes can map
their slave instance of the object to their local proxy of the session.

Objects can send command packets to each other by subclassing eq::net::Object-
Packet, which is derived from SessionPacket. The object packet extends the session
packet by the object identifier and an object instance identifier.

Multiple instances of the same object (identifier) can be mapped on the same
node and session simultaneously. Each object instance has a node-unique instance
identifier. When the instance ID is set to EQ ID ANY (the default value), a com-
mand is dispatch to all object instance registered to the session with the correct
object ID. Multiple object instance per node are used when different threads on the
node need to process a different version of the same object.
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Figure 52: Communication between two objects

Distributed objects provide
data synchronization func-
tionality, as described in
Section 6.3. Additionally,
applications can send com-
mand packets by creating
custom object packets with
a command greater than
CMD OBJECT CUSTOM.

Distributed object commu-
nication relies on the lower
node and session communica-
tion layers, as shown in Fig-
ure 52.

8.6. Barrier

The eq::net::Barrier provides a networked barrier primitive. It is an eq::net::Object
used by Equalizer for software swap barrier support, but it can be used as a generic
barrier in application code.

The barrier uses both the data distribution for synchronizing its data, as well as
custom command packets to implement the barrier logics. A barrier is a versioned
object. Each version can have a different height, and enter request are automatically
grouped together by version.

8.7. Usage in Equalizer

The Equalizer client library and server are built on top of the network layer. They
influence the design of it, and serve as a sample implementation on how to use
classes in the eq::net namespace.

8.7.1. eq::Object

Equalizer uses the eq::net::Object data distribution mechanism for implementing
data distribution between the server, application and render clients. To do this,
eq::Object implements one usage pattern for the eq::net::Object, allowing inheritance
with data distribution. It is easier to use, but imposes one typical way to implement
data distribution.

The eq::Object data distribution is based on the concept of dirty bits. Dirty bits
form a 64-bit mask which marks which parts of the object have to be distributed
during the next commit.

For serialization, the default eq::net::Object serialization functions are imple-
mented by eq::Object, which (de-)serializes and resets the dirty bits, and calls seri-
alize or deserialize with the bit mask specifying which data has to be transmitted or
received. During a commit or sync, the current dirty bits are given, whereas during
object mapping all dirty bits are passed to the serialization methods.

To use eq::Object, the following steps have to be taken:

Inherit from eq::Object: The base class will provide the dirty bit management and
call serialize and deserialize appropriately. By overriding getChangeType, the
default versioning strategy might be changed.

Define new dirty bits: Define dirty bits for each data item by starting at Ob-
ject::DIRTY CUSTOM, shifting this value consecutively by each new dirty bit.
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Implement serialize and deserialize: For each object-specific dirty bit which is set,
stream the corresponding data item to or from the provided stream. Call the
parent method first in both functions. For application-specific objects, write
a (de-)serialization function.

Mark dirty data: In each ’setter’ method, call setDirty with the corresponding dirty
bit.

The inheritance chain eq::View → eq::Frustum → eq::Object → eq::net::Object
serves as sample implementation for this process. The eq::Object base class provides
the facility to set a name on the object, which is automatically distributed.

The registration and mapping of eq::Objects is done in the same way as for
eq::net::Objects, which has been described in Section 8.5. Equalizer objects derived
from eq::Object, e.g., eq::View, are typically registered and mapped by Equalizer.
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A. File Format

The current Equalizer file format is a one-to-one representation of the server’s in-
ternal data structures. Its purpose is intermediate, that is, it will gradually be
replaced by automatic resource detection and automatic configuration. However
the core scalability engine will always use a similar structure as currently exposed
by the file format.

The file format represents an ASCII deserialization of the server. Streaming
an eq::server::Server to an eq::base::Log ostream produces a valid configuration file.
Likewise, loading a configuration file produces an eq::server::Server.

The file format uses the same syntactical structure as VRML. If your editor
supports syntax highlighting and formatting for VRML, you can use this mode for
editing .eqc files.

The configuration file consist of an optional global section and a server configu-
ration. The global section defines default values for various attributes. The server
section represents an eq::server::Server.

A.1. File Format Version

A.2. Global Section

The global section defines default values for attributes used by the individual entities
in the server section. The naming convention for attributes is:
EQ <ENTITY> <DATATYPE>ATTR<ATTR NAME>

The entity is the capitalized name of the corresponding section later in the con-
figuration file: connection, config, pipe, window, channel or compound. The con-
nection is used by the server and nodes.

The datatype is one capital letter for the type of the attribute’s value: S for
strings, C for a character, I for an integer and F for floating-point values. Enumera-
tion values are handled as integers. Strings have always to be surrounded by double
quotes ’”’. A character has to be surrounded by single quotes ’’’.

The attribute name is the capitalized name of the entities attribute, as discussed
in the following sections.

Global attribute values have useful default parameters, which can be overridden
with an environment variable of the same name. For enumeration values the corre-
sponding integer value has to be used. The global values in the config file override
environment variables, and are in turn overridden by the corresponding attributes
sections of the specific entities.

The globals section starts with the token global and an open curly brace ’{’, and
is terminated with a closing curly brace ’}’. Within the braces, globals are set using
the attribute’s name followed by its value. The following attributes are available:

Name EQ CONNECTION SATTR HOSTNAME
Value string
Default ”localhost”
Details The hostname or IP address used to connect the server or node.

When used for the server, the listening port of the server is bound to
this address. When used for a node, the server first tries to connect to
the render client node using this hostname, and then tries to launch
the render client executable on this host.

See also EQ CONNECTION SATTR LAUNCH COMMAND
EQ CONNECTION IATTR TCPIP PORT
EQ CONNECTION IATTR TYPE
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Name EQ CONNECTION SATTR LAUNCH COMMAND
Value string
Default ssh -n %h %c >& %h.%n.log [POSIX]

ssh -n %h %c [WIN32]
Details The command used by the server to auto-launch nodes which could

not be connected. The launch command is executed from a pro-
cess forked from the server process. The % tokens are replaced by
the server at runtime with concrete data: %h is replaced by the
hostname, %c by the render client command to launch, including
command line arguments and %n by a node-unique identifier. Each
command line argument is surrounded by launch command quotes.

See also EQ CONNECTION SATTR LAUNCH COMMAND QUOTE
EQ CONNECTION IATTR LAUNCH TIMEOUT

Name EQ CONNECTION CATTR LAUNCH COMMAND QUOTE
Value character
Default ’ [POSIX]

” [WIN32]
Details The server uses command line arguments to launch render client

nodes correctly. Certain launch commands or shells use different
conventions to separate command line arguments. These arguments
might contain white spaces, and therefore have to be surrounded by
quotes to identify their borders. This option is mostly used on Win-
dows.

Name EQ CONNECTION IATTR TYPE
Value TCPIP | SDP | PIPE [Win32 only]
Default TCPIP
Details The protocol for connections. SDP programmatically selects the

socket direct protocol (AF INET SDP) provided by most InfiniBand
protocol stacks, TCPIP uses normal TCP sockets (AF INET). PIPE
uses a named pipe to communicate between two processes on the
same machine.

Name EQ CONNECTION IATTR TCPIP PORT
Value unsigned
Default 0
Details The listening port used by the server or node. For nodes, the port

can be used to contact pre-started, resident render client nodes or to
use a specific port for the node. If 0 is specified, a random port is
chosen. Note that a server with no connections automatically creates
a default connection using the server’s default port.

Name EQ CONNECTION IATTR PIPE FILENAME
Value string
Default none
Details The filename of the named pipe used by the server or node. The

filename has to be unique on the local host.

Name EQ CONNECTION IATTR LAUNCH TIMEOUT
Value unsigned
Default 60’000 (1 minute)
Details Defines the timeout in milliseconds to wait for an auto-launched node.

If the render client process did not contact the server within that time,
the node is considered to be unreachable and the initialization of the
configuration fails.
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Name EQ CONFIG FATTR EYE BASE
Value float
Default 0.05
Details The default distance in meters between the left and the right eye,

i.e., the eye separation. The eye base influences the frustum during
stereo rendering. See Section 7.5 for details.

See also EQ WINDOW IATTR HINT STEREO
EQ COMPOUND IATTR STEREO MODE

Name EQ NODE IATTR THREAD MODEL
Value ASYNC | DRAW SYNC | LOCAL SYNC
Default DRAW SYNC
Details The threading model for node synchronization. See Section 7.2.2 for

details.

Name EQ PIPE IATTR HINT THREAD
Value OFF | ON
Default ON
Details Determines if all task methods for a pipe and its children are ex-

ecuted from a separate operating system thread (default) or from
the node main thread. Non-threaded pipes have certain performance
limitations and should only be used where necessary.

Name EQ WINDOW IATTR HINT STEREO
Value OFF | ON | AUTO
Default AUTO
Details Determines if the window selects a quad-buffered stereo visual.

When set to AUTO, the default window initialization methods try
to allocate a stereo visual for windows, but fall back to a mono visual
if allocation fails. For PBuffers, AUTO selects a mono visual.

See also EQ COMPOUND IATTR STEREO MODE

Name EQ WINDOW IATTR HINT DOUBLEBUFFER
Value OFF | ON | AUTO
Default AUTO
Details Determines if the window selects a double-buffered stereo visual.

When set to AUTO, the default window initialization methods try
to allocate a double-buffered visual for windows, but fall back to a
single-buffered visual if allocation fails. For PBuffers, AUTO selects
a single-buffered visual.

Name EQ WINDOW IATTR HINT DECORATION
Value OFF | ON
Default ON
Details When set to OFF, window borders and other decorations are disabled,

and typically the window cannot be moved or resized. This option is
useful for source windows during decomposition. The implementation
is window-system specific.

Name EQ WINDOW IATTR HINT FULLSCREEN
Value OFF | ON
Default OFF
Details When set to ON, the window displays in fullscreen. This option

forces window decorations to be OFF. The implementation is window-
system specific.
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Name EQ WINDOW IATTR HINT SWAPSYNC
Value OFF | ON
Default ON
Details Determines if the buffer swap is synchronized with the vertical retrace

of the display. This option is currently not implemented for GLX.
For WGL, the WGL EXT swap control extension is required. For
optimal performance, set swap synchronization to OFF for source-
only windows. This option has no effect on single-buffered windows.

Name EQ WINDOW IATTR HINT DRAWABLE
Value window | pbuffer | FBO
Default window
Details Selects the window’s drawable type. A window is an on-screen, win-

dow system-dependent window with a full-window OpenGL draw-
able. PBuffers are off-screen drawables created using window system-
dependent PBuffer API’s. FBO are off-screen frame buffer objects.
To calculate the PBuffer or FBO size on unconnected devices, a pipe
viewport size of 4096x4096 is assumed, unless specified otherwise us-
ing the pipe’s viewport parameter.

Name EQ WINDOW IATTR HINT STATISTICS
Value OFF | FASTEST [ON] | NICEST
Default FASTEST [Release Build]

NICEST [Debug Build]
Details Determines how statistics are gathered. OpenGL buffers commands,

which causes the rendering to be executed at an arbitrary point in
time. Nicest statistics gathering executes a Window::finish, which
calls by default glFinish, in order to accurately account the rendering
operations to the sampled task method. However, calling glFinish
has a performance impact. Therefore, the fastest statistics gather-
ing samples the task statistics directly, without finishing the OpenGL
commands first. Some operations, e.g., frame buffer readback, inher-
ently finish all previous OpenGL commands.

See also EQ NODE IATTR HINT STATISTICS
EQ CHANNEL IATTR HINT STATISTICS

Name EQ WINDOW IATTR PLANES COLOR
Value unsigned | RGBA16F | RGBA32F
Default AUTO
Details Determines the number of color planes for the window. The inter-

pretation of this value is window system-specific, as some window
systems select a visual with the closest match to this value, and some
select a visual with at least the number of color planes specified.
RGBA16F and RGBA32F select floating point framebuffers with 16
or 32 bit precision per component, respectively. AUTO selects a vi-
sual with a reasonable quality, typically eight bits per color.

Name EQ WINDOW IATTR PLANES ALPHA
Value unsigned
Default UNDEFINED
Details Determines the number of alpha planes for the window. The inter-

pretation of this value is window system-specific, as some window
systems select a visual with the closest match to this value, and some
select a visual with at least the number of alpha planes specified. By
default no alpha planes are requested.
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Name EQ WINDOW IATTR PLANES DEPTH
Value unsigned
Default AUTO
Details Determines the precision of the depth buffer. The interpretation of

this value is window system-specific, as some window systems select
a visual with the closest match to this value, and some select a visual
with at least the number of depth bits specified. AUTO select a
visual with a reasonable depth precision, typically 24 bits.

Name EQ WINDOW IATTR PLANES STENCIL
Value unsigned
Default AUTO
Details Determines the number of stencil planes for the window. The in-

terpretation of this value is window system-specific, as some win-
dow systems select a visual with the closest match to this value, and
some select a visual with at least the number of stencil planes spec-
ified. AUTO tries to select a visual with at least one stencil plane,
but falls back to no stencil planes if allocation fails. Note that for
depth-compositing and pixel-compositing at least one stencil plane is
needed.

Name EQ WINDOW IATTR PLANES ACCUM
Value unsigned
Default UNDEFINED
Details Determines the number of color accumulation buffer planes for the

window. The interpretation of this value is window system-specific,
as some window systems select a visual with the closest match to this
value, and some select a visual with at least the number of accumu-
lation buffer planes specified.

Name EQ WINDOW IATTR PLANES ACCUM ALPHA
Value unsigned
Default UNDEFINED
Details Determines the number of alpha accumulation buffer planes for the

window. The interpretation of this value is window system-specific,
as some window systems select a visual with the closest match to this
value, and some select a visual with at least the number of accumula-
tion buffer planes specified. If this attribute is undefined, the value of
EQ WINDOW IATTR PLANES ACCUM is used to determine the
number of alpha accumulation buffer planes.

Name EQ WINDOW IATTR PLANES SAMPLES
Value unsigned
Default UNDEFINED
Details Determines the number of samples used for multisampling.

Name EQ CHANNEL IATTR HINT STATISTICS
Value OFF | FASTEST [ ON ] | NICEST
Default FASTEST [Release Build]

NICEST [Debug Build]
Details See EQ WINDOW IATTR HINT STATISTICS.
See also EQ NODE IATTR HINT STATISTICS

EQ WINDOW IATTR HINT STATISTICS
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Name EQ COMPOUND IATTR STEREO MODE
Value QUAD | ANAGLYPH
Default QUAD
Details Selects the algorithm used for stereo rendering. QUAD-buffered

stereo uses the left and right buffers of a stereo window (active stereo).
Anaglyphic stereo uses glColorMask to mask colors for individual eye
passes, used in conjunction with colored glasses.

Name EQ COMPOUND IATTR STEREO ANAGLYPH LEFT MASK
Value [ RED GREEN BLUE ]
Default [ RED ]
Details Select the color mask for the left eye pass during anaglyphic stereo

rendering.
Name EQ COMPOUND IATTR STEREO ANAGLYPH RIGHT MASK
Value [ RED GREEN BLUE ]
Default [ GREEN BLUE ]
Details Select the color mask for the right eye pass during anaglyphic stereo

rendering.

A.3. Server Section

The server section consists of connection description parameters for the server lis-
tening sockets, and a number of configurations for this server. Currently only the
first configuration is used.

A.3.1. Connection Description

A connection description defines the network parameters of an Equalizer process.
Currently TCP/IP, SDP and PIPE connection types are supported. TCP/IP cre-
ates a TCP socket. SDP is very similar, except that the address family AF INET SDP
instead of AF INET is used to enforce a SDP connection. PIPE uses a named pipe
for fast interprocess communication on Windows.

Note that you can also use the transparent mode provided by most InfiniBand
implementations to use SDP with TCP connections.

Furthermore, a port for the socket can be specified. When no port is specified
for the server, the default port 4242 (+UID on Posix systems) is used. When no
port is specified for a node, a random port will be chosen by the operating system.
For pre-launched render clients, a port has to be specified for the server to find the
client node.

The hostname is the IP address or (resolvable) host name. A server or node may
have multiple connection descriptions, for example to use a named pipe for local
communications and TCP/IP for remote nodes.

A server listens on all provided connection descriptions. If no hostname is speci-
fied for a server connection description, it listens to INADDR ANY, and is therefore
reachable on all network interfaces. If the server’s hostname is specified, the lis-
tening socket is bound only to this address. If any of the given hostnames is not
resolvable, or any port cannot be used, server initialization will fail.

For a node, all connection descriptions are used while trying to establish a con-
nection to the node. When auto-launched by the server, all connection descriptions
of the node are passed to the launched node process, which will cause it to bind to
all provided descriptions.
s e r v e r
{

connect ion # 0−n times , l i s t e n i n g connec t i ons o f the s e r v e r
{
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type TCPIP | SDP | PIPE [ Win32 only ]
TCPIP port unsigned
PIPE fi lename s t r i n g
hostname s t r i n g

}

c on f i g { . . . } # 1−n times , cu r r en t l y only the f i r s t one i s used by the s e r v e r
}

A.3.2. Config Section

A configuration has a number of parameters, nodes, observers, layouts, canvases
and compounds.

The nodes and their children describe the rendering resources in a natural, hierar-
chical way. Observers, layouts and canvases describe the properties of the physical
projection system. Compounds use rendering resources (channels) to execute ren-
dering tasks.

For an introduction to writing configurations and the concepts of the configuration
entities please refer to Section 3.

The latency of a config defines the maximum number of frames the slowest op-
eration may fall behind the application thread. A latency of 0 synchronizes all
rendering tasks started by Config::startFrame in Config::finishFrame. A latency of
one synchronizes all rendering tasks started one frame ago in finishFrame.

For a description of config attributes please refer to Section A.2.
c on f i g
{

l a t ency int # Nr . o f frames nodes may f a l l behind app l i c a t i on , default 1
a t t r i b u t e s
{

eye base f loat # di s t anc e between l e f t and r i g h t eye
}

appNode { . . . } # 0 |1 times , launches render threads with in app proce s s
node { . . . } # 1−n times , a system in the c l u s t e r
obse rve r { . . . } # 0−n times , one tracked en t i t y
layout { . . . } # 0−n times , l o g i c a l views on canvases
canvas { . . . } # 0−n times , phy s i c a l segment layout o f a p r o j e c t i o n su r f a c e
compound { . . . } # 0−n times , r ender ing d e s c r i p t i o n

}

A.3.3. Node Section

A node represents a machine in the cluster, and is one process. It has a name, a
number of connection descriptions and at least one pipe. The name of the node
can be used for debugging, it has no influence on the execution of Equalizer. For a
description of node and connection attributes please refer to Section A.2.
node
{

name s t r i n g
connect ion # 0−n times , p o s s i b l e connec t i ons to this node
{

type TCPIP | SDP | PIPE
TCPIP port unsigned
PIPE fi lename s t r i n g
hostname s t r i n g
command s t r i n g # render c l i e n t launch command
command quote ’ cha rac t e r ’ # launch command argument quote char
t imeout unsigned # timeout in m i l l i s e c ond s for launch

}
a t t r i b u t e s
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{
thread model ASYNC | DRAWSYNC | LOCAL SYNC

}
pipe { . . . } # 1−n times

}

A.3.4. Pipe Section

A pipe represents a graphics card (GPU), and is one execution thread. It has a
name, GPU settings and attributes. The name of a pipe can be used for debugging,
it has no influence on the execution of Equalizer.

The GPU is identified by two parameters, a port and a device. The port is only
used for the GLX window system, and identifies the port number of the X server,
i.e., the number after the colon in the DISPLAY description (’:0.1’).

The device identifies the graphics adapter. For the GLX window system this
is the screen number, i.e., the number after the dot in the DISPLAY description
(:0.1). The OpenGL output is always restricted by glX to the GPU attached to
selected screen.

For the AGL window system, the device selects the nth display in the list of
online displays. The OpenGL output is optimized for the selected display, but not
restricted to the attached GPU.

For the WGL window system, the device selects the nth GPU in the system.
The GPU can be offline, in this case only PBuffer windows can be used. To restrict
the OpenGL output to the GPU, the WGL NV gpu affinity extension is used. If the
extension is not present, the window is opened on the nth monitor, but OpenGL
commands are sent to all GPU’s.

The viewport of the pipe can be used to override the pipe resolution. The viewport
is defined in pixels. The x and y parameter of the viewport are currently ignored.
The default viewport is automatically detected. For offline GPU’s, a default of
4096x4096 is used.

For a description of pipe attributes please refer to Section A.2.
pipe
{

name s t r i n g
port unsigned # X se rv e r number or i gnored
dev i c e unsigned # graph i c s adapter number
viewport [ v iewport ] # default : autodetec t
a t t r i b u t e s
{

h in t th r ead OFF | ON # default ON
}

window { . . . } # 1−n times
}

A.3.5. Window Section

A window represents an OpenGL drawable and holds an OpenGL context. It has a
name, a viewport and attributes. The name of a window can be used for debugging,
it has no influence on the execution of Equalizer, other then it being used as the
window title by the default window creation methods.

The viewport of the window is relative to the pipe. It can be specified in relative or
absolute coordinates. Relative coordinates are normalized coordinates with respect
to the pipe, e.g., a viewport of [ 0.25 0.25 0.5 0.5 ] creates a window in the middle
of the screen, using 50% of the pipe’s size. Absolute coordinates are integer pixel
values, e.g., a viewport of [ 50 50 800 600 ] creates a window 50 pixels from the
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upper-left corner, sized 800x600 pixels, regardless of the pipe’s size. The default
viewport is [ 0 0 1 1 ], i.e., a full-screen window.

For a description of window attributes please refer to Section A.2.
window
{

name s t r i n g
viewport [ v iewport ] # wrt pipe , default f u l l s c r e en

a t t r i b u t e s
{

h i n t s t e r e o OFF | ON | AUTO
h in t doub l ebu f f e r OFF | ON | AUTO
h in t d e c o r a t i on OFF | ON
h i n t f u l l s c r e e n OFF | ON
hint swapsync OFF | ON # AGL, WGL only
h int drawable window | pbu f f e r | FBO
h i n t s t a t i s t i c s o f f | f a s t e s t [ on ] | n i c e s t
p l a n e s c o l o r unsigned | RGBA16F | RGBA32F
p lane s a lpha unsigned
planes depth unsigned
p l a n e s s t e n c i l unsigned
planes accum unsigned
planes accum alpha unsigned
p lanes sample s unsigned

}

channel { . . . } # 1−n times
}

A.3.6. Channel Section

A channel is a two-dimensional area within a window. It has a name, viewport and
attributes. The name of the channel is used to identify the channel in the respective
segments or compounds. It should be unique within the config.

The viewport of the channel is relative to the window. As for windows, it can be
specified in relative or absolute coordinates. The default viewport is [ 0 0 1 1 ], i.e.,
fully covering its window.

The channel can have an alternate drawable description. Currently, the win-
dow’s framebuffer can be replaced by framebuffer objects bound to the window’s
OpenGL context. The window’s default framebuffer can be partially overwritten
with framebuffer objects.

For a description of channel attributes please refer to Section A.2.
channel
{

name s t r i n g
viewport [ v iewport ] #wrt window , default f u l l window
drawable [ FBO COLOR FBO DEPTH FBO STENCIL ]

a t t r i b u t e s
{

h i n t s t a t i s t i c s OFF | FASTEST [ON] | NICEST
}

}

A.3.7. Observer Section

An observer represents a tracked entity, i.e, one user. It has a name and an eye
separation. The name of an observer can be used for debugging, it has no influence
on the execution of Equalizer. It can be used to reference the observer in views,
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in which case the name should be unique. Not all views have to be tracked by an
observer.
obse rve r # 0 . . . n t imes
{

name s t r i n g
eyeBase f loat

}

A.3.8. Layout Section

A layout represent a set of logical views on one or more canvases. It has a name and
child views. The name of a layout can be used for debugging, it has no influence
on the execution of Equalizer. It can be used to reference the layout, in which case
the name should be unique.

A layout is applied to a canvas. If no layout is applied to a canvas, nothing is
rendered on this canvas, i.e, the canvas is inactive.

The layout assignment can be changed at runtime by the application. The in-
tersection between views and segments defines which output (sub-)channels are
available. These output channels are typically used as destination channels in a
compound. They are automatically created during configuration loading or cre-
ation.
l ayout # 0 . . . n t imes
{

name s t r i n g
view { . . . } # 1 . . . n t imes

}

A.3.9. View Section

A view represents a 2D area on a canvas. It has a name, viewport, observer and
frustum. The name of a view can be used for debugging, it has no influence on the
execution of Equalizer. It can be used to reference the view, in which case the name
should be unique.

A view can have a frustum description. The view’s frustum overrides frusta
specified at the canvas or segment level. This is typically used for nonphysically
correct rendering, e.g., to compare two models side-by-side. If the view does not
specify a frustum, the corresponding destination channels will use the sub-frustum
resulting from the view/segment intersection.

A view is a view on the application’s model, in the sense used by the Model-
View-Controller pattern. It can be a scene, viewing mode, viewing position, or any
other representation of the application’s data.
view # 1 . . . n t imes
{

name s t r i n g
obse rve r observer−r e f
v iewport [ v iewport ]

wa l l // frustum de s c r i p t i on
{

bo t tom l e f t [ f loat f loat f loat ]
bottom r ight [ f loat f loat f loat ]
t o p l e f t [ f loat f loat f loat ]
type f i x ed | HMD

}
p r o j e c t i o n // a l t e r na t e frustum desc r i p t i on , l a s t one wins
{

o r i g i n [ f loat f loat f loat ]
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d i s t ance f loat
fov [ f loat f loat ]
hpr [ f loat f loat f loat ]

}
}

A.3.10. Canvas Section

A canvas represents a logical projection surface of multiple segments. It has a name,
frustum, layouts, and segments. The name of a canvas can be used for debugging,
it has no influence on the execution of Equalizer. It can be used to reference the
canvas, in which case the name should be unique.

Each canvas is made of one or more segments. Segments can be planar or non-
planar to each other, and can overlap or have gaps between each other. A canvas
can define a frustum, which will create default, planar sub-frusta for its segments.

The layouts referenced by the canvas can be applied to it by the application at
runtime. One layout can be referenced by multiple canvases. The first layout is the
layout active by default.
canvas # 0 . . . n t imes
{

name s t r i n g
layout layout−r e f # 1 . . . n t imes

wa l l
{

bo t tom l e f t [ f loat f loat f loat ]
bottom r ight [ f loat f loat f loat ]
t o p l e f t [ f loat f loat f loat ]
type f i x ed | HMD

}
p r o j e c t i o n
{

o r i g i n [ f loat f loat f loat ]
d i s t anc e f loat
fov [ f loat f loat ]
hpr [ f loat f loat f loat ]

}

segment { . . . } # 1 . . . n t imes
}

A.3.11. Segment Section

A segment represents a single display, i.e., a projector or monitor. It references a
channel, has a name, viewport and frustum. The name of a segment can be used
for debugging, it has no influence on the execution of Equalizer. It can be used to
reference the segment, in which case the name should be unique.

The channel referenced by the segment defines the output channel. The viewport
of the section defines the 2D area covered by the channel on the canvas. Segments
can overlap each other, e.g., when edge-blended projectors or passive stereo is used.

A segment can define a frustum, in which case it overrides the default frustum
calculated from the canvas frustum and segment viewport.
segment # 1 . . . n t imes
{

channel s t r i n g
name s t r i n g
viewport [ v iewport ]

wa l l // frustum de s c r i p t i on
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{
bo t tom l e f t [ f loat f loat f loat ]
bottom r ight [ f loat f loat f loat ]
t o p l e f t [ f loat f loat f loat ]
type f i x ed | HMD

}
p r o j e c t i o n // a l t e r na t e frustum desc r i p t i on , l a s t one wins
{

o r i g i n [ f loat f loat f loat ]
d i s t anc e f loat
fov [ f loat f loat ]
hpr [ f loat f loat f loat ]

}
}

A.3.12. Compound Section

Compounds are the basic data structure describing the rendering setup. They use
channels for rendering. Please refer to Section 3.10 for a description of compound
operation logics.

The name of the compound is used for the default names of swap barriers and
output frames.

A channel reference is either the name of the channel in the resource section
if no canvases are used, or the destination channel reference of a view/segment
intersection. Channel segment references are delimited by braces, in which the
canvas, segment, layout and view describing the channel are named, i.e, ’channel (
canvas ”PowerWall” segment 0 layout ”Simple” view 0 )’.

Compound tasks describe the operations the compound executes. The default
is all tasks for compounds with no children (leaf compounds) and READBACK
ASSEMBLE for all others. The readback and assemble tasks are only executed
if the compound has output frames or input frames, respectively. Tasks are not
inherited by the children of a compound.

The buffer defines the default frame buffer attachments read back by output
frames. Output frames may change the buffer attachments used.

The viewport restricts the rendering to the area relative to the parent compound.
The range restricts the database range, relative to the parent. The pixel setting
selects the pixel decomposition kernel, relative to the parent. The eye pass select
the mono, left or right eye passes rendered by the compound. The zoom scales the
parent pixel viewport resolution. The DPlex period defines that 1

period frames are
rendered, and the phase defines when in the period the rendering starts. All these
attributes are inherited by the children of a compound. Viewport, range, pixel and
period parameters are cumulative.

Equalizers are used to automatically optimize the decomposition. A 2D, hori-
zontal or vertical load equalizer adjusts the viewport of all direct children of the
compound each frame. A DB load equalizer adjusts the range of all direct children.
A dynamic framerate (DFR) equalizer adjusts the zoom for a constant framerate. A
framerate equalizer smoothens the framerate of the compound’s window to produce
a steady output framerate, typically for DPlex compounds. A monitor equalizer
adjusts the output image zoom to monitor another canvas.

For a description of compound attributes please refer to Section A.2.
A wall or projection description is used to define the view frustum of the com-

pound. The frustum is inherited and typically only defined on the topmost com-
pound. The last specified frustum description is used. Sizes are specified in meters.
Figure 11 illustrates the frustum parameters.

A swap barrier is used to synchronize the output of multiple compounds. All
swap barriers of the same name are synchronized The default name is barrier[.root-
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CompoundName]. All windows using the same NV group on a single system are
synchronized with each other using hardware synchronization. All groups using
the same NV barrier across systems are synchronized with each other using hard-
ware synchronization. When using hardware synchronization, the barrier name is
ignored.

Output frames transport frame buffer contents to input frames of the same name.
If the compound has a name, the default frame name is frame.compoundName,
otherwise the default name is frame.channelName. The frame buffer attachments
to read back are inherited from the compound, but can be overridden by output
frames. Frames of type texture copy the framebuffer contents to a texture, and can
only be used to composite frames between windows of the same pipe.
compound
{

name s t r i n g
channel channel−r e f # where the compound task s are executed

task [ CLEAR DRAW READBACK ASSEMBLE ]
bu f f e r [ COLOR DEPTH ] # default COLOR

viewport [ v iewport ] # wrt parent compound , sort− f i r s t
range [ f loat f loat ] # DB−range for sor t−l a s t
p i x e l [ int int ] # p i x e l decomposit ion ( s tep s i z e )
eye [ CYCLOP LEFT RIGHT ] # monoscopic or s t e r e o view
zoom [ f loat f loat ] # up/downscale o f parent pvp
per iod int # DPlex per iod , every nth frame rendered
phase int # DPlex phase , when to s t a r t r ender ing

l o a d e qu a l i z e r # adjus t 2D t i l i n g or DB range o f ch i l d r en
{

mode 2D | DB | VERTICAL | HORIZONTAL
damping f loat # 0: no damping , 1 : no changes

}
DFR equalizer # adjus t ZOOM to ach ieve constant f ramerate
{

f ramerate f loat # targ e t f ramerate
damping f loat # 0: no damping , 1 : no changes

}
f r ame r a t e e qua l i z e r {} # smoothen window swapbuf fer r a t e (DPlex )
mon i t o r equa l i z e r {} # se t frame zoom when monitor ing other views

a t t r i b u t e s
{

stereo mode QUAD | ANAGLYPH # default QUAD
st e r e o anag l yph l e f t ma sk [ RED GREEN BLUE ] # default red
s t e r eo anag lyph r i gh t mask [ RED GREEN BLUE ] # df green blue

}

wal l # frustum de s c r i p t i o n
{

bo t tom l e f t [ f loat f loat f loat ]
bottom r ight [ f loat f loat f loat ]
t o p l e f t [ f loat f loat f loat ]
type f i x ed | HMD

}
p r o j e c t i o n # a l t e r n a t e frustum de s c r i p t i on , l a s t one wins
{

o r i g i n [ f loat f loat f loat ]
d i s t anc e f loat
fov [ f loat f loat ]
hpr [ f loat f loat f loat ]

}

ch i ld−compounds
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swapbarr i e r # compounds with the same barr iername sync swap
{

name s t r i n g
NV group OFF | ON | unsigned
NV barr ier OFF | ON | unsigned

}
outputframe
{

name s t r i n g
bu f f e r [ COLOR DEPTH ]
type t ex tu re | memory

}
inputframe
{

name s t r i n g # corre spond ing output frame
}

}

channel−r e f : ’ s t r i n g ’ | ’ ( ’ channel−segment−r e f ’ ) ’
channel−segment−r e f : ( canvas−r e f ) segment−r e f ( layout−r e f ) view−r e f
canvas−r e f : ’ s t r i n g ’ | ’ index ’
segment−r e f : ’ s t r i n g ’ | ’ index ’
layout−r e f : ’ s t r i n g ’ | ’ index ’
view−r e f : ’ s t r i n g ’ | ’ index ’
observer−r e f : ’ s t r i n g ’ | ’ index ’
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