
Equalizer
Programming and User Guide

Eyescale Software GmbH

The official reference for developing and deploying
parallel, scalable OpenGL™ applications using the

Equalizer parallel rendering framework

Version 1.14 for Equalizer 1.6

July 26, 2013

Equalizer Programming and User Guide

July 26, 2013

Contributors

Written by Stefan Eilemann.
Contributions by Daniel Nachbaur, Maxim Makhinya, Jonas Bösch, Christian Marten,
Sarah Amsellem, Patrick Bouchaud, Philippe Robert, Robert Hauck and Lucas
Peetz Dulley.

Copyright

©2007-2013 Eyescale Software GmbH. All rights reserved. No permission is granted
to copy, distribute, or create derivative works from the contents of this electronic
documentation in any manner, in whole or in part, without the prior written per-
mission of Eyescale Software GmbH.

Trademarks and Attributions

OpenGL is a registered Trademark, OpenGL Multipipe is a Trademark of Silicon
Graphics, Inc. Linux is a registered Trademark of Linus Torvalds. Mac OS is
a Trademark of Apple Inc. CAVELib is a registered Trademark of the Univer-
sity of Illinois. The CAVE is a registered Trademark of the Board of Trustees of
the University of Illinois at Chicago. Qt is a registered Trademark of Trolltech.
TripleHead2Go is a Trademark of Matrox Graphics. PowerWall is a Trademark of
Mechdyne Corporation. CUDA is a Trademark of NVIDIA Corporation. All other
trademarks and copyrights herein are the property of their respective owners.

Feedback

If you have comments about the content, accuracy or comprehensibility of this
Programming and User Guide, please contact eile@eyescale.ch.

Front and Back Page

The images on the front page show the following applications build using Equal-
izer: RTT DeltaGen1 [top right], Bino, a stereo-capable, multi-display video player2

[middle center], a flow visualization application for climate research3 [middle right],
the eqPly polygonal renderer in a three-sided CAVE [bottom left], the eVolve vol-
ume renderer4 [bottom center], and the RTNeuron5 application to visualize cortical
circuit simulations [bottom right].

The images on the back page show the following scalable rendering modes: Sub-
pixel (FSAA) [top left], DPlex [middle left], Pixel [middle center], 2D [bottom left],
DB [bottom center] and stereo [bottom right].

1Image copyright Realtime Technology AG, 2008
2http://bino.nongnu.org/
3Image courtesy of Computer Graphics and Multimedia Systems, University of Siegen
4Data set courtesy of General Electric, USA
5Image courtesy of Cajal Blue Brain / Blue Brain Project

http://www.eyescale.ch
mailto:eile@eyescale.ch?subject=Equalizer%20Programming%20Guide
http://bino.nongnu.org/
http://cajalbbp.cesvima.upm.es/
http://bluebrain.epfl.ch

Contents

Contents

I. User Guide 1

1. Introduction 1
1.1. Parallel Rendering . 1
1.2. Installing Equalizer and Running eqPly 2
1.3. Equalizer Processes . 2

1.3.1. Server . 2
1.3.2. Application . 3
1.3.3. Render Clients . 3
1.3.4. Administration Programs . 3

2. Scalable Rendering 3
2.1. 2D or Sort-First Compounds . 4
2.2. DB or Sort-Last Compounds . 4
2.3. Stereo Compounds . 5
2.4. DPlex Compounds . 5
2.5. Tile Compounds . 6
2.6. Pixel Compounds . 7
2.7. Subpixel Compounds . 8
2.8. Automatic Runtime Adjustments . 8

3. Configuring Equalizer Clusters 9
3.1. Auto-Configuration . 9

3.1.1. Hardware Service Discovery 9
3.1.2. Usage . 9

3.2. Preparation . 10
3.3. Summary . 11
3.4. Node . 12
3.5. Pipe . 12
3.6. Window . 12
3.7. Channel . 13
3.8. Canvases . 13

3.8.1. Segments . 14
3.8.2. Swap and Frame Synchronization 14

3.9. Layouts . 15
3.9.1. Views . 15

3.10. Observers . 16
3.11. Compounds . 16

3.11.1. Writing Compounds . 17
3.11.2. Compound Channels . 18
3.11.3. Frustum . 18
3.11.4. Compound Classification . 18
3.11.5. Tasks . 18
3.11.6. Decomposition - Attributes 18
3.11.7. Recomposition - Frames . 18
3.11.8. Adjustments - Equalizers . 19

4. Setting up a Visualization Cluster 21
4.1. Name Resolution . 21
4.2. Server . 22

i

Contents

4.3. Starting Render Clients . 22
4.3.1. Prelaunched Render Clients 22
4.3.2. Auto-launched Render Clients 22

4.4. Debugging . 23

II. Programming Guide 24

5. Programming Interface 24
5.1. Hello, World! . 24
5.2. Namespaces . 25
5.3. Task Methods . 27
5.4. Execution Model and Thread Safety 27

6. The Sequel Simple Equalizer API 28
6.1. main Function . 29
6.2. Application . 29
6.3. Renderer . 30

7. The Equalizer Parallel Rendering Framework 31
7.1. The eqPly Polygonal Renderer . 31

7.1.1. main Function . 32
7.1.2. Application . 34
7.1.3. Distributed Objects . 37
7.1.4. Config . 41
7.1.5. Node . 46
7.1.6. Pipe . 47
7.1.7. Window . 49
7.1.8. Channel . 51

7.2. Advanced Features . 56
7.2.1. Event Handling . 56
7.2.2. Error Handling . 60
7.2.3. Thread Synchronization . 61
7.2.4. OpenGL Extension Handling 65
7.2.5. Window System Integration 66
7.2.6. Stereo and Immersive Rendering 70
7.2.7. Layout API . 73
7.2.8. Region of Interest . 76
7.2.9. Image Compositing for Scalable Rendering 77
7.2.10. Subpixel Processing . 83
7.2.11. Statistics . 85
7.2.12. GPU Computing with CUDA 87

8. The Collage Network Library 88
8.1. Connections . 89
8.2. Command Handling . 89
8.3. Nodes . 90

8.3.1. Zeroconf Discovery . 90
8.3.2. Communication between Nodes 90

8.4. Objects . 91
8.4.1. Common Usage for Parallel Rendering 92
8.4.2. Change Handling and Serialization 93
8.4.3. co::Serializable . 93
8.4.4. Slave Object Commit . 95

ii

List of Figures

8.4.5. Push Object Distribution . 96
8.4.6. Communication between Object Instances 97
8.4.7. Usage in Equalizer . 98

8.5. Barrier . 98
8.6. ObjectMap . 98

A. Command Line Options 99

B. File Format 99
B.1. File Format Version . 100
B.2. Global Section . 100
B.3. Server Section . 106

B.3.1. Connection Description . 106
B.3.2. Config Section . 107
B.3.3. Node Section . 107
B.3.4. Pipe Section . 108
B.3.5. Window Section . 109
B.3.6. Channel Section . 109
B.3.7. Observer Section . 110
B.3.8. Layout Section . 110
B.3.9. View Section . 110
B.3.10. Canvas Section . 111
B.3.11. Segment Section . 112
B.3.12. Compound Section . 113

List of Figures

1. Parallel Rendering . 1
2. Equalizer Processes . 2
3. 2D Compound . 4
4. Database Compound . 4
5. Stereo Compound . 5
6. A DPlex Compound . 6
7. Tile Compound . 6
8. Pixel Compound . 7
9. Pixel Compound Kernel . 7
10. Example Pixel Kernels for a four-to-one Pixel Compound 8
11. Subpixel Compound . 8
12. GPU discovery for auto-configuration 9
13. An Example Configuration . 11
14. Wall and Projection Parameters . 13
15. A Canvas using four Segments . 14
16. Layout with four Views . 15
17. Display Wall using a six-Segment Canvas with a two-View Layout . 16
18. 2D Load-Balancing . 19
19. Cross-Segment Load-Balancing for two Segments using eight GPUs 19
20. Cross-Segment Load-Balancing for a CAVE 20
21. Dynamic Frame Resolution . 20
22. Monitoring a Projection Wall . 21
23. Hello, World! . 24
24. Namespaces . 26
25. Equalizer client UML map . 27
26. Simplified Execution Model . 28

iii

List of Figures

27. UML Diagram eqPly and relevant Equalizer Classes 32
28. Synchronous and Asynchronous Execution 36
29. co::Serializable and co::Object . 39
30. Scene Data in eqPly . 40
31. Scene Graph Distribution . 41
32. Config Initialization Sequence . 42
33. SystemWindow UML Class Hierarchy 49
34. Destination View of a DB Compound using Demonstrative Coloring 54
35. Main Render Loop . 55
36. Event Processing . 57
37. UML Class Diagram for Event Handling 58
38. Threads within one Node Process . 62
39. Async, draw sync and local sync Thread Synchronization Models . . 63
40. Per-Node Frame Synchronization . 64
41. Synchronization of Frame Tasks . 65
42. Monoscopic(a) and Stereoscopic(b) Frusta 70
43. Tracked(a) and HMD(b) Immersive Frusta 71
44. Fixed(a) and dynamic focus distance relative to origin(b) and ob-

server(c) . 72
45. Fixed(a), relative to origin(b) and observer(c) focus distance examples 72
46. UML Hierarchy of eqPly::View . 73
47. Using two different decompositions during stereo and mono rendering 75
48. Event Flow during a View Update 76
49. ROI for a two-way(a) and four-way DB(b) compound 76
50. ROI for 2D load balancing . 76
51. Direct Send Compositing . 79
52. Hierarchy of Assembly Classes . 80
53. Functional Diagram of the Compositor 81
54. Final Result(a) of Figure 55(b) using Volume Rendering based on 3D

Texture Slicing(b). 82
55. Back-to-Front Compositing for Orthogonal and Perspective Frusta . 82
56. Statistics for a two node 2D compound 86
57. Detail of the Statistics from Figure 56. 86
58. UML class diagram of the major Collage classes 89
59. Communication between two Nodes 90
60. Object Distribution using Subclassing, Proxies or Multiple Inheritance 93
61. Slave Commit Communication Sequence 95
62. Communication between two Objects 97

Revision History

Rev Date Changes
1.0 Oct 28, 2007 Initial Version for Equalizer 0.4
1.2 Apr 15, 2008 Revision for Equalizer 0.5
1.4 Nov 25, 2008 Revision for Equalizer 0.6
1.6 Aug 07, 2009 Revision for Equalizer 0.9
1.8 Mar 21, 2011 Revision for Equalizer 1.0
1.10 Feb 17, 2012 Revision for Equalizer 1.2
1.12 Jul 20, 2012 Revision for Equalizer 1.4
1.14 Jul 25, 2013 Revision for Equalizer 1.6

iv

Part I.

User Guide

1. Introduction

Equalizer is the standard middleware for the development and deployment of par-
allel OpenGL applications. It enables applications to benefit from multiple graph-
ics cards, processors and computers to improve the rendering performance, visual
quality and display size. An Equalizer-based application runs unmodified on any
visualization system, from a simple workstation to large scale graphics clusters,
multi-GPU workstations and Virtual Reality installations.

This User and Programming Guide introduces parallel rendering concepts, the
configuration of Equalizer-based applications and programming using the Equalizer
parallel rendering framework.

Equalizer is the most advanced middleware for scalable 3D visualization, provid-
ing the broadest set of parallel rendering features available in an open source library
to any visualization application. Many commercial and open source applications in
a variety of different markets rely on Equalizer for flexibility and scalability.

Equalizer provides the domain-specific parallel rendering expertise and abstracts
configuration, threading, synchronization, windowing and event handling. It is a
‘GLUT on steroids’, providing parallel and distributed execution, scalable rendering
features, an advanced network library and fully customizable event handling.

If you have any question regarding Equalizer programming, this guide, or other
specific problems you encountered, please direct them to the eq-dev mailing list6.

1.1. Parallel Rendering

yesyesyes

begin frame
clear

draw

end frame

event handling

exit ?

update data

exit config

stop

start

init config

init windows

exit?

start

stop

noexit?

start

stop

no

swap

clear

draw

swap

init windows

no

Figure 1: Parallel Rendering

Figure 1 illustrates the ba-
sic principle of any parallel
rendering application. The
typical OpenGL application,
for example using GLUT, has
an event loop which redraws
the scene, updates applica-
tion data based on received
events, and eventually ren-
ders a new frame.

A parallel rendering appli-
cation uses the same basic
execution model, extending
it by separating the render-
ing code from the main event
loop. The rendering code is
then executed in parallel on
different resources, depending
on the configuration chosen
at runtime.

This model is naturally
followed by Equalizer, thus
making application development as easy as possible.

6http://www.equalizergraphics.com/lists.html

1

http://www.equalizergraphics.com/lists.html

1. Introduction

1.2. Installing Equalizer and Running eqPly

Equalizer can be installed by using a package or building the source code7. After
installing Equalizer, please take a look at the Quickstart Guide8 to get familiar with
the capabilities of Equalizer and the eqPly example. Currently we provide Ubuntu
packages on launchpad9 and MacPorts portfiles10.

Equalizer uses Buildyard and cmake to generate platform-specific build files.
Compiling Equalizer from source consist of cloning Buildyard, the Eyescale con-
figurations and then building Equalizer:

g i t c l one https : // g i t hub . com/Eyesca le /Bui ldyard . g i t
cd Buildyard
g i t c l one https : // g i t hub . com/Eyesca le / con f i g . g i t con f i g . e y e s ca l e
make Equa l i z e r

The Windows build is similar, except that CMake will generate a Visual Studio
solution which is used to build Equalizer.

1.3. Equalizer Processes

The Equalizer architecture is based on a client-server model. The client library ex-
poses all functionality discussed in this document to the programmer, and provides
communication between the different Equalizer processes.

libEqualizer.so
libEqualizer.so

libEqualizer.so
Application

Application
Render Client

Application
Render Client

Application
Render Client

co
ntr

ol

drive
libEqualizer.so

Equalizer
Server

libCollage.so

libEqualizer.so
libCollage.so

libCollage.so

EqualizerAdmin
Admin

Console

libCollage.so

m
od

ify
Figure 2: Equalizer Processes

Collage is a cross-platform C++ library for
building heterogeneous, distributed applications.
Collage provides an abstraction of different net-
work connections, peer-to-peer messaging, dis-
covery and synchronization as well as high-
performance, object-oriented, versioned data dis-
tribution. Collage is designed for low-overhead
multi-threaded execution which allows applica-
tions to easily exploit multi-core architectures.
Equalizer uses Collage as the cluster backend,
e.g., by setting up direct communication between
two nodes when needed for image compositing or
software swap barriers.

Figure 2 depicts the relationship between the server, application, render client
and administrative processes, which are explained below.

1.3.1. Server

The Equalizer server is responsible for managing one visualization session on a
shared memory system or graphics cluster. Based on its configuration and con-
trolling input from the application, it computes the active resources, updates the
configuration and generates tasks for all processes. Furthermore it controls and
launches the application’s rendering client processes. The Equalizer server is the
entity in charge of the configuration, and all other processes receive their configura-
tion from the server. It typically runs as a separate entity within separate threads
in the application process.

7http://www.equalizergraphics.com/downloads.html
8http://www.equalizergraphics.com/documents/EqualizerGuide.html
9https://launchpad.net/ eilemann/+archive/equalizer

10https://github.com/Eyescale/portfiles

2

http://www.equalizergraphics.com/downloads.html
http://www.equalizergraphics.com/documents/EqualizerGuide.html
https://launchpad.net/~eilemann/+archive/equalizer
https://github.com/Eyescale/portfiles

2. Scalable Rendering

1.3.2. Application

The application connects to an Equalizer server and receives a configuration. Fur-
thermore, the application also provides its render client, which will be controlled
by the server. The application and render client may use the same executable. The
application has a main loop, which reacts on events, updates its data and controls
the rendering.

1.3.3. Render Clients

The render client implements the rendering part of an application. Its execution is
passive, it has no main loop and is completely driven by Equalizer server. It executes
the rendering tasks received from the server by the calling the appropriate task
methods (see Section 5.3) in the correct thread and context. The application either
implements the task methods with application-specific code or uses the default
methods provided by Equalizer.

The application can also be a rendering client, in which case it can also contribute
to the rendering. If it does not implement any render client code, it is reduced to be
the application’s ‘master’ process without any OpenGL windows and 3D rendering.

The rendering client can be the same executable as the application, as it is the
case with all provided examples. When it is started as a render client, the Equal-
izer initialization routine does not return and takes over the control by calling the
render client task methods. Complex applications usually implement a separate,
lightweight rendering client.

1.3.4. Administration Programs

Equalizer 1.0 introduced the admin library, which can be used to modify a running
Equalizer server. The admin library is still in development, but already allows lim-
ited modifications such as adding new windows and changing layouts. The admin
library may be used to create standalone administration tools or from within the
application code. In any case, it has an independent view of the server’s configu-
ration. Documentation for admin library is not yet part of this Programming and
User Guide.

2. Scalable Rendering

Scalable rendering is a subset of parallel rendering, where more multiple resources
are used to update a view.

Real-time visualization is an inherently parallel problem. Different applications
have different rendering algorithms, which require different scalable rendering modes
to address the bottlenecks correctly. Equalizer supports all important algorithms
as listed below, and will continue to add new ones over time to meet application
requirements.

This section gives an introduction to scalable rendering, providing some back-
ground for end users and application developers. The scalability modes offered by
Equalizer are discussed, along with their advantages and disadvantages.

Choosing the right mode for the application profile is critical for performance.
Equalizer uses the concept of compounds to describe the task decomposition and
result recomposition. It allows the combination of the different compound modes
in any possible way, which allows to address different bottlenecks in a flexible way.

3

2. Scalable Rendering

2.1. 2D or Sort-First Compounds

2D decomposes the rendering in screen-space, that is, each contributing rendering
unit processes a tile of the final view. The recomposition simply assembles the tiles
side-by-side on the destination view. This mode is also known as sort-first or SFR.

channel "buffer3"
viewport [upper-left]

outputframe "tile.b3"

channel "buffer2"
viewport [lower-right]

outputframe "tile.b2"

channel "buffer1"
viewport [lower-left]

outputframe "tile.b1"

channel "destination"
wall { ... }

inputframe "tile.b1"
inputframe "tile.b2"
inputframe "tile.b3"

channel "destination"
viewport [upper-right]

Figure 3: 2D Compound

The advantage of this mode
is a low, constant IO overhead
for the pixel transfers, since
only color information has to
be transmitted. The upper
limit is the amount of pixel
data for the destination view.

Its disadvantage is that it
relies on view frustum culling
to reduce the amount of data
submitted for rendering. De-
pending on the application
data structure, the overlap of some primitives between individual tiles limits the
scalability of this mode, typically to around eight graphics cards. Each node has to
potentially hold the full database for rendering.

2D decompositions can be used by all types of applications, but should be com-
bined with DB compounds to reduce the data per node, if possible. In most cases,
a load equalizer should be used to automatically adjust the tiling each frame, based
on the current rendering load.

2D compounds in Equalizer are configured using the viewport parameter, using
the values [x y width height] in normalized coordinates. The viewport defines the
area of the parent (destination) channel to be rendered for each child. Each child
compound uses an output frame, which is connected to an input frame on the
destination channel. The destination channel can also be used as a source channel,
in which case it renders in place and no output frame is needed.

2.2. DB or Sort-Last Compounds

channel "buffer2"
range [3rd quarter]

outputframe "frame.b2"

channel "buffer1"
range [2nd quarter]

outputframe "frame.b1"

channel "destination"
wall { ... }

inputframe "frame.b1"
inputframe "frame.b2

channel "destination"
range [1st quarter]

Figure 4: Database Compound

DB, as shown in Figure 411,
decomposes the rendered data-
base so that all rendering
units process a part of the
scene in parallel. This mode
is also known as sort-last, and
is very similar to the data
decomposition approach used
by HPC applications.

Volume rendering applica-
tions use an ordered alpha-
based blending to composite
the result image. The depth
buffer information is used to
composite the individual im-
ages correctly for polygonal
data.

This mode provides very
good scalability, since each rendering unit processes only a part of the database.

113D model courtesy of AVS, USA.

4

2. Scalable Rendering

This allows to lower the requirements on all parts of the rendering pipeline: main
memory usage, IO bandwidth, GPU memory usage, vertex processing and fill rate.

Unfortunately, the database recomposition has linear increasing IO requirements
for the pixel transfer. Parallel compositing algorithms, such as direct-send, address
this problem by keeping the per-node IO constant (see Figure 51).

The application has to partition the database so that the rendering units render
only part of the database. Some OpenGL features do not work correctly (anti-
aliasing) or need special attention (transparency, shadows).

The best use of database compounds is to divide the data to a manageable size,
and then to use other decomposition modes to achieve further scalability. Volume
rendering is one of the applications which can profit from database compounds.

DB compounds in Equalizer are configured using the range parameter, using the
values [begin end] in normalized coordinates. The range defines the start and end
point of the application’s database to be rendered. The value has to be interpreted
by the application’s rendering code accordingly. Each child compound uses an
output frame, which is connected to an input frame on the destination channel. For
more than two contributing channels, it is recommended to configure streaming or
parallel direct send compositing, as described in Section 7.2.9.

2.3. Stereo Compounds

Stereo compounds, as shown in Figure 512, assign each eye pass to individual ren-
dering units. The resulting images are copied to the appropriate stereo buffer. This
mode supports a variety of stereo modes, including active (quad-buffered) stereo,
anaglyphic stereo and auto-stereo displays with multiple eye passes.

channel "buffer"
eye [RIGHT]

outputframe "frame"

channel "destination"
wall { ... }

inputframe "frame"

channel "destination"
eye [LEFT]

Figure 5: Stereo Compound

Due to the frame consis-
tency between the eye views,
this modes scales very well.
The IO requirements for pixel
transfer are small and con-
stant. The number of render-
ing resources used by stereo
compounds is limited by the
number of eye passes, typi-
cally two.

Stereo compounds are used
by all applications when ren-
dering in stereo, and is often
combined with other modes.

Eye compounds in Equalizer are configured using the eye parameter, limiting
the child to render the [LEFT] or [RIGHT] eye. Each child compound uses an
output frame, which is connected to an input frame on the destination channel.
The destination channel can also be used to render an eye pass, in which case it
renders in the correct stereo buffer and no output frame is needed.

2.4. DPlex Compounds

DPlex compounds assign full, alternating frames to individual rendering units. The
resulting images are copied to the destination channel, and Equalizer load-balancing
is used to ensure a steady framerate on the destination window. This mode is also
known as time-multiplex or AFR.

123D model courtesy of Stereolithography Archive at Clemson University.

5

2. Scalable Rendering

channel "buffer1"
period 3 phase 0

outputframe "DPlex"

channel "buffer3"
period 3 phase 2

outputframe "DPlex"

channel "buffer2"
period 3 phase 1

outputframe "DPlex"

channel "destination"
wall { ... }

inputframe "DPlex"

Figure 6: A DPlex Compound

Due to the frame con-
sistency between consecutive
frames, this mode scales very
well. The IO requirements for
pixel transfer are small and
constant.

DPlex requires a latency
of at least n frames. This
increased latency might be
disturbing to the user, but
it is often compensated by
the higher frame rate. The
frame rate typically increases
linearly with the number of
source channels, and there-
fore linearly with the latency.

DPlex compounds in Equal-
izer are configured using the
period and phase parameter, limiting each child to render a subset of the frames.
Each child compound uses an output frame, which is connected to an input frame
on the destination channel. The destination channel uses a framerate equalizer to
smoothen the framerate.

2.5. Tile Compounds

Tile compounds are similar to 2D compounds. They decompose the rendering in
screen-space, where each rendering unit pulls and processes regular tiles of the final
view. Tile compounds are ideal for purely fill-limited applications such as volume
rendering and raytracing.

channel "destination"
wall { ... }

outputtiles{}

inputframe "frame2"
inputframe "frame3"

channel "destination"
inputtiles{}

channel "buffer3"
inputtiles{}

outputframe "frame3"

channel "buffer2"
inputtiles{}

outputframe "frame2"

Figure 7: Tile Compound

Tile compounds have a low,
constant IO overhead for the
image transfers and can pro-
vide good scalability when
used with fill-limited appli-
cations. Tile decomposition
works transparently for all
Equalizer-based applications.

Contrary to all other com-
pounds, the work distribution
is not decided before-hand us-
ing a push model, but each re-
source pulls work from a cen-
tral work queue, until all tiles
have been processed. There-
fore the rendering is natu-
rally load-balanced since all
sources pull data on an as-
needed basis. The queue im-
plementation uses prefetching to hide the communication overhead of the central,
distributed tile queue.

6

2. Scalable Rendering

2.6. Pixel Compounds

Pixel compounds are similar to 2D compounds. While 2D compounds decompose
the screen space into contiguous regions, pixel compounds assign one pixel of a regu-
lar kernel to each resource. The frusta of the source rendering units are modified so
that each unit renders an evenly distributed subset of pixels, as shown in Figure 813

channel "buffer1"
pixel [0 3]

outputframe "frame1"

channel "buffer2"
pixel [2 3]

outputframe "frame3"

channel "buffer1"
pixel [1 3]

outputframe "frame3"

channel "destination"
wall { ... }

inputframe "frame1"
inputframe "frame2"
inputframe "frame3"

Figure 8: Pixel Compound

As 2D compounds, pixel
compounds have low, con-
stant IO requirements for the
pixel transfers during recom-
position. They are naturally
load-balanced for fill-limited
operations, but do not scale
geometry processing at all.

OpenGL functionality in-
fluenced by the raster posi-
tion will not work correctly
with pixel compounds, or
needs at least special atten-
tion. Among them are: lines,
points, sprites, glDrawPixels,
glBitmap, glPolygonStipple.
The application can query the
current pixel parameters at
runtime to adjust the render-
ing accordingly.

Pixel compounds work well for purely fill-limited applications. Techniques like
view frustum culling do not reduce the rendered data, since each resource has ap-
proximately the same frustum. Pixel compounds are ideal for ray-tracing, which is
highly fill-limited and needs the full database for rendering anyway. Volume ren-
dering applications are also well suited for this mode, and should choose it over 2D
compounds.

kernel width

ke
rn

el
 h

ei
gh

t

y

x

Figure 9: Pixel Compound Kernel

Pixel compounds in Equalizer are configured
using the pixel parameter, using the values [x
y width height] to configure the size and offset
of the sampling kernel. The width and height
of the sampling kernel define how many pixels
are skipped in the x and y direction, respec-
tively. The x and y offset define the index of the
source channel within the kernel. They have to
be smaller than the size of the kernel. Figure 9
illustrates these parameters, and Figure 10 shows
some example kernels for a four-to-one pixel de-
composition.

The destination channel can also be used as
a source channel. Contrary to the other com-
pound modes, it also has to use an output and
corresponding input frame. During rendering, the
frustum is ’squeezed’ to configure the pixel decomposition. The destination channel
can therefore not be rendered in place, like with the other compound modes.

133D model courtesy of AVS, USA.

7

2. Scalable Rendering

Pixel [0 0 2 2]
Pixel [1 0 2 2]
Pixel [0 1 2 2]
Pixel [1 1 2 2]

Pixel [0 0 4 1]
Pixel [1 0 4 1]
Pixel [2 0 4 1]
Pixel [3 0 4 1]

Pixel [0 0 1 4]
Pixel [0 1 1 4]
Pixel [0 2 1 4]
Pixel [0 3 1 4]

Pixel [0 0 2 2]
Pixel [1 0 2 2]
Pixel [0 1 1 4]
Pixel [0 3 1 4]

Figure 10: Example Pixel Kernels for a four-to-one Pixel Compound

2.7. Subpixel Compounds

Subpixel decomposes the rendering of multiple samples for one pixel, e.g., for anti-
aliasing or depth-of-field rendering. The default implementation provides transpar-
ent, scalable software idle-antialiasing when configuring a subpixel compound.

channel "buffer2"
subpixel [2 3]

outputframe "frame.b3"

channel "buffer1"
subpixel [1 3]

outputframe "frame.b2"

channel "destination"
wall { ... }

inputframe "frame.b1"
inputframe "frame.b2"
inputframe "frame.b3"

channel "destination"
subpixel [0 3]

outputframe "frame.b1"

Figure 11: Subpixel Compound

Applications can use sub-
pixel compounds to acceler-
ate depth-of-field effects and
software anti-aliasing, with
potentially a different number
of idle or non-idle samples per
pixel.

As for the DB compound,
the subpixel recomposition
has linear increasing IO re-
quirements for the pixel trans-
fer, with the difference that
only color information has to
be transmitted.

Subpixel compounds are
configured using the subpixel
parameter, using the values
[index size]. The index pa-
rameter corresponds to the current resource index and the size is the total number
of resources used.

The index has to be smaller than the size. Figure 11 illustrates a three-way
subpixel decomposition.

The destination channel can also be used as a source channel. As for the pixel
compound, it has to use an output and corresponding input frame.

2.8. Automatic Runtime Adjustments

Some scalable rendering parameters are updated at runtime to provide optimal
performance or influence other scalable rendering features. These adjustments are
often referred to as load-balancing, but are called equalizers, since their functionality
is not limited to load-balancing in Equalizer.

The server provides a number of equalizers, which automatically update certain
parameters of compounds based on runtime information. They balance the load
of 2D and DB compounds, optimally distribute render resources for multi-display

8

3. Configuring Equalizer Clusters

projection systems, adjust the resolution to provide a constant framerate or zoom
images to allow monitoring of another view.

Equalizers are described in more detail in Section 3.11.8.

3. Configuring Equalizer Clusters

3.1. Auto-Configuration

3.1.1. Hardware Service Discovery

Equalizer uses the hwsd library for discovering local and remote GPUs as well as
network interfaces. Based on this information, a typical configuration is dynamically
compiled during the initialization of the application. The auto-configuration uses
the same format as the static configuration files. It can be used to create template
configurations by running a test application or the eqServer binary and using the
generated configuration, saved as <session>.auto.eqc.

Please note that both hwsd and the hwsd ZeroConf module are optional and
require hwsd and a ZeroConf implementation when Equalizer is compiled.

hwsd contains three components: a core library, local and remote discovery mod-
ules as well as a ZeroConf daemon. The daemon uses the appropriate module to
query local GPUs and network interfaces to announce them using ZeroConf on the
local network.

GPU1 GPU2

GPU1 GPU2

GPU-SD
cgl

GPU-SD
glx Equalizer

GPU-SD
cgldns_sdZeroConf

_gpu-sd

Figure 12: GPU discovery for auto-configuration

Equalizer uses the library
with the dns sd discovery
module to gather the infor-
mation announced by all dae-
mons on the local network,
as well as the local discov-
ery modules for standalone
auto-configuration. The de-
fault configuration is using all
locally discovered GPUs and
network interfaces.

Figure 12 shows how hwsd is used to discover four remote GPUs on two different
machines to use them to render a single view on a laptop.

3.1.2. Usage

On each node contributing to the configuration, install and start the hwsd daemon.
If multiple, disjoint configurations are used on the same network, provide the session
name as a parameter when starting the daemon. Verify that all GPUs and network
interfaces are visible on the application host using the hw sd list tool. When starting
the application, use the command-line parameter –eq-config:

• The default value is local which uses all local GPUs and network interfaces
queried using the cgl, glx, or wgl GPU modules and the sys network module.

• –eq-config sessionname uses the dns sd ZeroConf module of hwsd to query all
GPUs and network interfaces in the subnet for the given session. The default
session of the hwsd daemon is default. The found network interfaces are used
to connect the nodes.

• –eq-config filename.eqc loads a static configuration from the given ASCII file.
The following sections describe how to write configuration files.

9

3. Configuring Equalizer Clusters

The auto-configuration creates one display window on the local machine, and one
off-screen channel for each GPU. The display window has one full-window channel
used as an output channel for a single segment. It combines all GPUs into a
scalability config with different layouts for each of the following scalability modes:

2D A dynamically load-balanced sort-first configuration using all GPUs as sources.

Simple A no-scalability configuration using only the display GPU for rendering.

Static DB A static sort-last configuration distributing the range evenly across all
GPUs.

Dynamic DB A dynamically load-balanced sort-last configuration using all GPUs
as sources.

DB Direct Send A direct send sort-last configuration using all GPUs as sources.

DB 2D A direct send sort-last configuration using all nodes together with a dy-
namically load-balanced sort-first configuration using local GPUs.

All suitable network interfaces are used to configure the nodes, that is, the launch
command has to be able to resolve one hostname for starting the render client
processes. Suitable interfaces have to be up and match optional given values which
can be specified by the following command-line parameters:

–eq-config-flags <ethernet|infiniband> Limit the selection of network interfaces
to one of those types.

–eq-config-prefixes <CIDR-prefixes> Limit the selection of network interfaces that
match the given prefix.

3.2. Preparation

Before writing a configuration, it is useful to assemble the following information:

• A list of all computers in your rendering cluster, including the IP addresses
of all network interfaces to be used.

• The number of graphics cards in each computer.

• The physical dimensions of the display system, if applicable. These are typ-
ically the bottom-left, bottom-right and top-left corner points of each display
surface in meters.

• The relative coordinates of all the segments belonging to each display sur-
face, and the graphics card output used for each segment. For homogeneous
setups, it is often enough to know the number of rows and columns on each
surface, as well as the overlap or underlap percentage, if applicable.

• The number of desired application windows. Application windows are typ-
ically destination windows for scalable rendering or ’control’ windows paired
with a view on a display system.

• Characteristics of the application, e.g., supported scalability modes and
features.

10

3. Configuring Equalizer Clusters

3.3. Summary

Equalizer applications are configured at runtime by the Equalizer server. The server
loads its configuration from a text file, which is a one-to-one representation of the
configuration data structures at runtime.

For an extensive documentation of the file format please refer to Appendix B.
This section gives an introduction on how to write configuration files.

A configuration consists of the declaration of the rendering resources, the descrip-
tion of the physical layout of the projection system, logical layouts on the projection
canvases and an optional decomposition description using the aforementioned re-
sources.

The rendering resources are represented in a hierarchical tree structure which cor-
responds to the physical and logical resources found in a 3D rendering environment:
nodes (computers), pipes (graphics cards), windows, channels.

Physical layouts of display systems are configured using canvases with segments,
which represent 2D rendering areas composed of multiple displays or projectors.
Logical layouts are applied to canvases and define views on a canvas.

Scalable resource usage is configured using a compound tree, which is a hierar-
chical representation of the rendering decomposition and recomposition across the
resources.

Display SystemConfigResources

canvas
swapbarrier{}

layout "Simple"

segment
channel "left"

wall { ... }

segment
channel "front"

wall { ... }

segment
channel "floor"

wall { ... }

segment
channel "right"

wall { ... }
Channel

name "left"
viewport {...}

Window
viewport {...}

Pipe

Node Node

Window
viewport {...}

Pipe

Channel
name "floor"

Window
viewport {...}

Pipe

Channel
name "front"

Channel
name "right"
viewport {...}

Lsyout
name "Simple"

View
mode STEREO

Figure 13: An Example Configuration

Figure 13 shows an example configuration for a four-side CAVE, running on two
machines (nodes) using three graphics cards (pipes) with one window each to render
to the four output channels connected to the projectors for each of the walls.

11

3. Configuring Equalizer Clusters

For testing and development purposes it is possible to use multiple instances
for one resource, e.g. to run multiple render client nodes on one computer. For
optimal performance during deployment, one node and pipe should be used for
each computer and graphics card, respectively.

3.4. Node

For each machine in your cluster, create one node. Create one appNode for your
application process. List all nodes, even if you are not planning to use them at
first. Equalizer will only instantiate and access used nodes, that is, nodes which are
referenced by an active compound.

In each node, list all connections through which this node is reachable. Typically
a node uses only one connection, but it is possible to configure multiple connections
if the machine and cluster is set up to use multiple, independent network interfaces.
Make sure the configured hostname is reachable from all nodes. An IP address may
be used as the hostname.

For cluster configurations with multiple nodes, configure at least one connection
for the server. All render clients connect back to the server, for which this connection
is needed.

The eq::Node class is the representation of a single computer in a cluster. One
operating system process of the render client will be used for each node. Each
configuration might also use an application node, in which case the application
process is also used for rendering. All node-specific task methods are executed from
the main application thread.

3.5. Pipe

For each node, create one pipe for each graphics card in the machine. Set the device
number to the correct index. On operating systems using X11, e.g., Linux, also set
the port number if your X-Server is running on a nonstandard port.

The eq::Pipe class is the abstraction of a graphics card (GPU), and uses one inde-
pendent operating system thread for rendering. Non-threaded pipes are supported
for integrating with thread-unsafe libraries, but have various performance caveats.
They should only be used if using a different, synchronized rendering thread is not
an option.

All pipe, window and channel task methods are executed from the pipe thread,
or in the case of non-threaded pipes from the main application thread14.

3.6. Window

Configure one window for each desired application window on the appNode. Con-
figure one full-screen window for each display segment. Configure one off-screen
window, typically a pbuffer, for each graphics card used as a source for scalable
rendering. Provide a useful name to each on-screen window if you want to easily
identify it at runtime.

Sometimes display segments cover only a part of the graphics card output. In this
case it is advised to configure a non-fullscreen window without window decorations,
using the correct window viewport.

The eq::Window class encapsulates a drawable and an OpenGL context. The
drawable can be an on-screen window or an off-screen pbuffer or framebuffer object
(FBO).

14see http://www.equalizergraphics.com/documents/design/nonthreaded.html

12

http://www.equalizergraphics.com/documents/design/nonthreaded.html

3. Configuring Equalizer Clusters

3.7. Channel

Configure one channel for each desired rendering area in each window. Typically
one full-screen channel per window is used. Name the channel using a unique, easily
identifiable name, e.g., ’source-1’, ’control-2’ or ’segment-2 3’.

Multiple channels in application windows may be used to view the model from
different viewports. Sometimes, a single window is split across multiple projectors,
e.g., by using an external splitter such as the Matrox TripleHead2Go. In this case
configure one channel for each segment, using the channel’s viewport to configure
its position relative to the window.

The eq::Channel class is the abstraction of an OpenGL viewport within its parent
window. It is the entity executing the actual rendering. The channel’s viewport is
overwritten when it is rendering for another channel during scalable rendering.

3.8. Canvases

If you are writing a configuration for workstation usage you can skip the following
sections and restart with Section 3.11.

Configure one canvas for each display surface. For planar surfaces, e.g., a display
wall, configure a frustum. For non-planar surfaces, the frustum will be configured
on each display segment.

The frustum can be specified as a wall or projection description. Take care to
choose your reference system for describing the frustum to be the same system as
used by the head-tracking matrix calculated by the application. A wall is completely
defined by the bottom-left, bottom-right and top-left coordinates relative to the
origin. A projection is defined by the position and head-pitch-roll orientation of
the projector, as well as the horizontal and vertical field-of-view and distance of the
projection wall.

projection

wall

dist
anc

e
origin

bot
tom

-rig
htbottom-left

top-left

HPR
FOV

Figure 14: Wall and Projection Parameters

Figure 14 illustrates the
wall and projection frustum
parameters.

A canvas represents one
physical projection surface,
e.g., a PowerWall, a curved
screen or an immersive in-
stallation. One configura-
tion might drive multiple can-
vases, for example an immer-
sive installation and an oper-
ator station.

A canvas consists of one
or more segments. A pla-
nar canvas typically has a
frustum description (see Sec-
tion 3.11.3), which is inher-
ited by the segments. Non-
planar frusta are configured using the segment frusta. These frusta typically de-
scribe a physically correct display setup for Virtual Reality installations.

A canvas has one or more layouts. One of the layouts is the active layout, that
is, this set of views is currently used for rendering. It is possible to specify OFF
as a layout, which deactivates the canvas. It is possible to use the same layout on
different canvases.

A canvas may have a swap barrier, which is used as the default swap barrier by
all its segments to synchronize the video output.

13

3. Configuring Equalizer Clusters

Canvases provide a convenient way to configure projection surfaces. A canvas
uses layouts, which describe logical views. Typically, each desktop window uses one
canvas, one segment, one layout and one view.

3.8.1. Segments

Configure one segment for each display or projector of each canvas. Configure the
viewport of the segment to match the area covered by the segment on the physical
canvas. Set the output channel to the resource driving the described projector.

For non-planar displays, configure the frustum as described in Section 3.8. For
passive stereo installations, configure one segment per eye pass, where the segment
for the left and right eye have the same viewport. Set the eyes displayed by the
segment, i.e., left or right and potentially cyclop.

To synchronize the video output, configure either a canvas swap barrier or a swap
barrier on each segment to be synchronized.

When using software swap synchronization, swap-lock all segments using a swap
barrier. All windows with a swap barrier of the same name synchronize their swap-
buffers. Software swap synchronization uses a distributed barrier, and works on all
hardware.

When using hardware swap synchronization, use swap barriers for all segment to
be synchronized, setting NV group and NV barrier appropriately. The swap barrier
name is ignored in this case. All windows of the same group on a single node
synchronize their swap buffer. All groups of the same barrier synchronize their
swap buffer across nodes. Please note that the driver typically limits the number
of groups and barriers to one, and that multiple windows per swap group are not
supported by all drivers. Hardware swap barriers require support from the OpenGL
driver, and has been tested on NVIDIA Quadro GPUs with the G-Sync option.
Please refer to your OpenGL driver documentation for details.

Figure 15: A Canvas using four
Segments

A segment represents one output channel of the
canvas, e.g., a projector or an LCD. A segment
has an output channel, which references the chan-
nel to which the display device is connected.

A segment covers a part of its parent canvas,
which is configured using the segment viewport.
The viewport is in normalized coordinates rela-
tive to the canvas. Segments might overlap (edge-
blended projectors) or have gaps between each
other (display walls, Figure 1515). The viewport
is used to configure the segment’s default frustum
from the canvas frustum description, and to place
layout views correctly.

3.8.2. Swap and Frame Synchronization

Canvases and segments may have a software or hardware swap barrier to synchronize
the buffer swap of multiple channels. The swap barriers are inherited from the
canvas to the segment ultimately to all compounds using a destination channel of
the segment.

A software swap barrier is configured by giving it a name. Windows with a
swap barrier of the same name synchronize with each other before executing the
swap buffer task. Before entering the barrier, Window::finish is called to ensure that
all OpenGL commands have been executed. Swap barrier names are only valid

15Dataset courtesy of VolVis distribution of SUNY Stony Brook, NY, USA.

14

3. Configuring Equalizer Clusters

within the compound tree, that is, a compound from one compound tree cannot be
synchronized with a compound from another compound tree.

A hardware swap barrier uses a hardware component to synchronize the buffer
swap of multiple windows. It guarantees that the swap happens at the same vertical
retrace of all corresponding video outputs. It is configured by setting the NV group
and NV barrier parameters. These parameters follow the NV swap group extension,
which synchronizes all windows bound to the same group on a single machine, and
all groups bound to the same barrier across systems.

Display synchronization uses different algorithms. Framelock synchronizes each
vertical retrace of multiple graphic outputs using a hardware component. This is
configured in the driver, independently of the application. Genlock synchronizes
each horizontal and vertical retrace of multiple graphic outputs, but is not com-
monly used anymore for 3D graphics. Swap lock synchronizes the front and back
buffer swap of multiple windows, either using a software solution based on network
communication or a hardware solution based on a physical cable. It is independent
of, but often used in conjunction with framelock.

Framelock is used to synchronize the vertical retrace in multi-display active stereo
installations, e.g., for edge-blended projection systems or immersive installations.
It is combined with a software or hardware swap barrier. Software barriers in this
case cannot guarantee that the buffer swap of all outputs always happens with the
same retrace. The time window for an output to miss the retrace for the buffer
swap is however very small, and the output will simply swap on the next retrace,
typically in 16 milliseconds.

Display walls made out of LCDs, monoscopic or passive stereo projection systems
often only use a software swap barrier and no framelock. The display bezels make
it very hard to notice the missing synchronization.

3.9. Layouts

Configure one layout for each configuration of logical views. Name the layout using
a unique name. Often only one layout with a one view is used for all canvases.

Enable the layout on each desired canvas by adding it to the canvas. Since
canvases reference layouts by name or index, layouts have to be configured before
their respective canvases in the configuration file.

A layout is the grouping of logical views. It is used by one or more canvases. For
all given layout/canvas combinations, Equalizer creates destination channels when
the configuration file is loaded. These destination channels can be referenced by
compounds to configure scalable rendering.

Layouts can be switched at runtime by the application. Switching a layout will
activate different destination channels for rendering.

3.9.1. Views

Figure 16: Layout with four
Views

Configure one view for each logical view in each
layout. Set the viewport to position the view. Set
the mode to stereo if appropriate.

A view is a logical view of the application data,
in the sense used by the Model-View-Controller
pattern. It can be a scene, viewing mode, view-
ing position, or any other representation of the
application’s data.

A view has a fractional viewport relative to
its layout. A layout is often fully covered by its
views, but this is not a requirement.

15

3. Configuring Equalizer Clusters

Each view can have a frustum description. The view’s frustum overrides frusta
specified at the canvas or segment level. This is typically used for non-physically
correct rendering, e.g., to compare two models side-by-side on a canvas. If the view
does not specify a frustum, it will use the sub-frustum resulting from the covered
area on the canvas.

A view might have an observer, in which case its frustum is tracked by this
observer. Figure 16 shows an example layout using four views on a single segment.
Figure 3.9.1 shows a real-world setup of a single canvas with six segments using
underlap, with a two-view layout activated. This configuration generates eight
destination channels.

Figure 17: Display Wall using a six-Segment Canvas with a two-View Layout

3.10. Observers

Unless you have multiple tracked persons, or want to disable tracking on certain
views, you can skip this section.

Configure one observer for each tracked person in the configuration. Most config-
urations have at most one observer. Assign the observer to all views which belong
to this observer. Since the observer is referenced by its name or index, it has to be
specified before the layout in the configuration file.

Views with no observer are not tracked. The config file loader will create one
default observer and assign it to all views if the configuration has no observer.

An observer represents an actor looking at multiple views. It has a head matrix,
defining its position and orientation within the world, an eye separation and focus
distance parameters. Typically, a configuration has one observer. Configurations
with multiple observers are used if multiple, head-tracked users are in the same con-
figuration session, e.g., a non-tracked control host with two tracked head-mounted
displays.

3.11. Compounds

Compound trees are used to describe how multiple rendering resources are combined
to produce the desired output, especially how multiple GPUs are aggregated to
increase the performance.

16

3. Configuring Equalizer Clusters

It is advised to study and understand the basic configuration files shipped with the
Equalizer configuration, before attempting to write compound configurations. The
auto-configuration code and command line program configTool, shipped with the
Equalizer distribution, creates some standard configurations automatically. These
are typically used as templates for custom configuration files.

For configurations using canvases and layouts without scalability, the configura-
tion file loader will create the appropriate compounds. It is typically not necessary
to write compounds for this use case.

The following subsection outlines the basic approach to writing compounds. The
remaining subsections provide an in-depth explanation of the compound structure
to give the necessary background for compound configuration.

3.11.1. Writing Compounds

The following steps are typically taken when writing compound configurations:

Root compound Define an empty top-level compound when synchronizing multi-
ple destination views. Multiple destination views are used for multi-display
systems, e.g., a PowerWall or CAVE. All windows used for one display surface
should be swap-locked (see below) to provide a seamless image. A single des-
tination view is typically used for providing scalability to a single workstation
window.

Destination compound(s) Define one compound for each destination channel, ei-
ther as a child of the empty group, or as a top-level compound. Set the desti-
nation channel by using the canvas, segment, layout and view name or index.
The compound frustum will be calculated automatically based on the segment
or view frustum. Note that one segment may created multiple view/segment
channels, one for each view intersection of each layout used on the canvas.
Only the compounds belonging to the active layout of a canvas are active at
runtime.

Scalability If desired, define scalability for each of your destination compounds.
Add one compound using a source channel for each contributor to the render-
ing. The destination channel may also be used as a source.

Decomposition On each child compound, limit the rendering task of that
child by setting the viewport, range, period and phase, pixel, subpixel, eye
or zoom as desired.

Runtime Adjustments A load equalizer may be used on the destination com-
pounds to set the viewport or range of all children each frame, based
on the current load. A view equalizer may be used on the root com-
pound to assign resources to all destination compounds, which have to
use load equalizers. A framerate equalizer should be used to smoothen the
framerate of DPlex compounds. A DFR equalizer may be used to set the
zoom of a compound to achieve a constant framerate. One compound
may have multiple equalizers, e.g., a load equalizer and a DFR equalizer
for a 2D compound with a constant framerate.

Recomposition For each source compound, define an output frame to read
back the result. Use this output frame as an input frame on the desti-
nation compound. The frames are connected with each other by their
name, which has to be unique within the root compound tree. For paral-
lel compositing, describe your algorithm by defining multiple input and
output frames across all source compounds.

17

3. Configuring Equalizer Clusters

3.11.2. Compound Channels

Each compound has a channel, which is used by the compound to execute the
rendering tasks. One channel might be used by multiple compounds. Compounds
are only active if their corresponding destination channel is active, that is, if the
parent layout of the view which created the destination channel is active on at least
one canvas.

Unused channels, windows, pipes and nodes are not instantiated during initial-
ization. Switching an active layout may cause rendering resources to be stopped
and started. The rendering tasks for the channels are computed by the server and
send to the appropriate render client nodes at the beginning of each frame.

3.11.3. Frustum

Compounds have a frustum description to define the physical layout of the display
environment. The frustum specification is described in Section 3.8. The frustum
description is inherited by the children, therefore the frustum is defined on the
topmost compound, typically by the corresponding segment.

3.11.4. Compound Classification

The channels of the leaf compounds in the compound tree are designated as source
channels. The topmost channel in the tree is the destination channel. One com-
pound tree might have multiple destination channels, e.g., for a swap-synchronized
immersive installation.

All channels in a compound tree work for the destination channel. The destina-
tion channel defines the 2D pixel viewport rendered by all leaf compounds. The
destination channel and pixel viewport cannot be overridden by child compounds.

3.11.5. Tasks

Compounds execute a number of tasks: clear, draw, assemble and readback. By
default, a leaf compound executes all tasks and a non-leaf compound assemble and
readback. A non-leaf compound will never execute the draw task.

A compound can be configured to execute a specific set of tasks, for example to
configure the multiple steps used by binary-swap compositing.

3.11.6. Decomposition - Attributes

Compounds have attributes which configure the decomposition of the destination
channel’s rendering, which is defined by the viewport, frustum and database. A
viewport decomposes the destination channel and frustum in screen space. A range
tells the application to render a part of its database, and an eye rendering pass can
selectively render different stereo passes. A pixel parameter adjusts the frustum so
that the source channel renders an even subset of the parent’s pixels. A subpixel pa-
rameter tells the source channels to render different samples for one pixel to perform
anti-aliasing or depth-of-field rendering. Setting one or multiple attributes causes
the parent’s view to be decomposed accordingly. Attributes are cumulative, that
is, intermediate compound attributes affect and therefore decompose the rendering
of all their children.

3.11.7. Recomposition - Frames

Compounds use output and input frames to configure the recomposition of the
resulting pixel data from the source channels. An output frame connects to an input
frame of the same name. The selected frame buffer data is transported from the

18

3. Configuring Equalizer Clusters

output channel to the input channel. The assembly routine of the input channel will
block on the availability of the output frame. This composition process is extensively
described in Section 7.2.9. Frame names are only valid within the compound tree,
that is, an output frame from one compound tree cannot be used as an input frame
of another compound tree.

3.11.8. Adjustments - Equalizers

Equalizers are used to update compound parameters based on runtime data. They
are attached to a compound (sub-)tree, on which they operate. The Equalizer
distribution contains numerous example configuration files using equalizers.

Load Equalizer While pixel, subpixel and stereo compounds are naturally load-
balanced, 2D and DB compounds often need load-balancing for optimal rendering
performance.

Figure 18: 2D Load-Balancing

Using a load equalizer is transparent to the ap-
plication, and can be used with any application
for 2D, and with most applications for DB load-
balancing. Some applications do not support dy-
namic updates of the database range, and there-
fore cannot be used with DB load-balancing.

Using a 2D or DB load-balancer will adjust
the 2D split or database range automatically each
frame. The 2D load-balancer exists in three fla-
vors: 2D using tiles, VERTICAL using columns
and HORIZONTAL using rows.

2D load-balancing increases the framerate over
a static decomposition in virtually all cases. It
works best if the application data is relatively
uniformly distributed in screen-space. A damping
parameter can be used to fine-tune the algorithm.

DB load-balancing is beneficial for applications
which cannot precisely predict the load for their
scene data, e.g., when the data is nonuniform. Volume rendering is a counterexam-
ple, where the data is uniform and a static DB decomposition typically results in a
better performance.

Figure 19: Cross-Segment Load-Balancing for two Seg-
ments using eight GPUs

View Equalizer Depending
on the model position and
data structure, each segment
of a multi-display system has
a different rendering load.
The segment with the biggest
load determines the overall
performance when using a
static assignment of resources
to segments. The view equal-
izer analyzes the load of all
segments, and adjusts the re-
source usage each frame. It
equalizes the load on all segments of a view.

19

3. Configuring Equalizer Clusters

Figure 1916 illustrates this process. On the left side, a static assignment of re-
sources to display segments is used. The right-hand segment has a higher load than
the left-hand segment, causing sub-optimal performance. The configuration on the
right uses a view equalizer, which assigns two GPUs to the left segment and four
GPUs to the right segment, which leads to optimal performance for this model and
camera position.

Figure 20: Cross-Segment Load-
Balancing for a CAVE

The view equalizer can also use resources from
another display resource, if this resource has little
rendering load by itself. It is therefore possible
to improve the rendering performance of a multi-
display system without any additional resources.
This is particularly useful for installations with
a higher number of displays where the rendering
load is typically in a few segments only, e.g., for
a CAVE.

Figure 20 shows cross-usage for a five-sided
CAVE driven by five GPUs. The front and left
segments show the model and have a significant
rendering load. The view equalizer assigns the
GPUs from the top, bottom and right wall for
rendering the left and front wall in this configu-
ration.

Cross-segment load-balancing is configured hi-
erarchically. On the top compound level, a view equalizer assigns resources to each
of its children, so that the optimal number of resources is used for each segment.
On the next level, a load equalizer on each child computes the resource distribu-
tion within the segment, taking the resource usage given by the view equalizer into
account.

Framerate Equalizer Certain configurations, in particular DPlex compounds, re-
quire a smoothing of the framerate at the destination channel, otherwise the fram-
erate will become periodically faster and slower. Using a framerate equalizer will
smoothen the swap buffer rate on the destination window for optimal user experi-
ence.

10 FPS3 FPS

Figure 21: Dynamic Frame Resolution

DFR Equalizer Dynamic Frame
Resolution (DFR) trades ren-
dering performance for vi-
sual quality. The render-
ing for a channel is done
at a different resolution than
the native channel resolution
to keep the framerate con-
stant. The DFR equalizer ad-
justs the zoom of a channel,
based on the target and cur-
rent framerate. It is typically
used for fill-rate bound appli-
cations, such as volume ren-
dering and ray-tracing.

16Image Copyright Realtime Technology AG, 2008

20

4. Setting up a Visualization Cluster

Figure 2117 shows DFR for volume rendering. To achieve 10 frames per second,
the model is rendered at a lower resolution, and upscaled to the native resolution for
display. The rendering quality is slightly degraded, while the rendering performance
remains interactive. When the application is idle, it renders a full-resolution view.

The dynamic frame resolution is not limited to subsampling the rendering resolu-
tion, it will also supersample the image if the source buffer is big enough. Upscaled
rendering, which will down-sample the result for display, provides dynamic anti-
aliasing at a constant framerate.

Monitor Equalizer The monitor equalizer allows the observation of another view,
potentially made of multiple segments, in a different channel at a different resolution.
This is typically used to reuse the rendering of a large-scale display on an operator
station.

Figure 22: Monitoring a Projection Wall

A monitor equalizer ad-
justs the frame zoom of the
output frames used to observe
the rendering, depending on
the destination channel size.
The output frames are down-
scaled on the GPU before
readback, which results in op-
timal performance.

Figure 22 shows a usage of
the monitor equalizer. A two-
segment display wall is driven
by a separate control station.
The rendering happens only
on the display wall, and the
control window receives the correctly downscaled version of the rendering.

4. Setting up a Visualization Cluster

This section covers the setup of a visualization cluster to run Equalizer applications.
It does not cover basic cluster management and driver installation. A prerequisite
to the following steps is a preinstalled cluster, including network and graphics card
drivers.

4.1. Name Resolution

Pay attention that your name resolution works properly, that is, the output of
the hostname command should resolve to the same, non-local IP address on all
machines. If this is not the case, you will have to provide the public IP address for
all processes, in the following way:

Server Specify the server IP as the hostname field in the connection description in
the server section.

Application Specify the application IP as the hostname field in the connection
description in the appNode section. If the application should not contribute
to the rendering, set up an appNode without a pipe section.

17Data set courtesy of Olaf Ronneberger, Computer Science Institute, University of Freiburg,
Germany

21

4. Setting up a Visualization Cluster

Render Clients Specify the client IPs as the hostname field in the connection de-
scription of each node section.

4.2. Server

The server may be started as a separate process or within the application process. If
it is started separately, simply provide the desired configuration file as a parameter.
It will listen on all network addresses, unless other connection parameters are spec-
ified in the configuration file. If the server is started within the application process,
using the –eq-config parameter, you will have to specify a connection description
for the server in the configuration file. Application-local servers do not create a
listening socket by default for security reasons.

4.3. Starting Render Clients

Cluster configurations use multiple Equalizer nodes, where each node represents a
separate process, typically on a different machine. These node processes have to be
started for a visualization session, and need to communicate with each other.

Equalizer supports prelaunched render clients and automatic render client launch-
ing, if configured properly. Prelaunched render clients are started manually or by
an external script on a predefined address. Auto-launched render client are started
and stopped by the Equalizer server on demand.

The two mechanism can coexist. The server will first try to connect a prelaunched
render client on the given connection descriptions for each node. If this fails, he will
try to auto-launch the render client. If the render client does not connect back to
the server within a certain timeout (default one minute), a failure to initialize the
configuration is reported back to the application.

4.3.1. Prelaunched Render Clients

Prelaunched render clients are useful if setting up auto-launching is too time-
consuming, e.g., on Windows which does not have a standard remote login pro-
cedure. The following steps are to be taken to use prelaunched render clients:

• Set the connection hostname and port parameters of each node in the con-
figuration file.

• Start the render clients using the parameters –eq-client and –eq-listen, e.g.,
./build/Linux/bin/eqPly –eq-client –eq-listen 192.168.0.2:1234. Pay attention
to use the same connection parameters as in the configuration file.

• Start the application. If the server is running on the same machine and user
as the application, the application will connect to it automatically. Otherwise
use the –eq-server parameter to specify the server address.

The render clients will automatically exit when the config is closed. The eqPly
example application implements the option -r to keep the render client processes
resident.

4.3.2. Auto-launched Render Clients

To automatically launch the render clients, the server needs to know the name of
the render client and the command to launch them without user interaction.

The name of the render client is automatically set to the name of the application
executable. This may be changed programmatically by the application. Normally

22

4. Setting up a Visualization Cluster

it suffices to install the application in the same directory on all machines, ideally
using a shared file system.

The default launch command is set to ssh, which is the most common solution for
remote logins. To allow the server to launch the render clients without user inter-
action, password-less ssh needs to be set up. Please refer to the ssh documentation
(cf. ssh-keygen and /.ssh/authorised keys) and verify the functionality by logging in
to each machine from the host running the server.

4.4. Debugging

If your configuration does not work, simplify it as much as possible first. Normally
this means that there is one server, application and render client. Failure to launch
a cluster configuration often is caused by one of the following reasons:

• A firewall is blocking network connections.

• The render client can’t access the GPUs on the remote host. Set up your X-
Server or application rights correctly. Log into the remote machine using the
launch command and try to execute a simple application, e.g., glxinfo -display
:0.1.

• The server does not find the prelaunched render client. Verify that the client
is listening on the correct IP and port, and that this IP and port are reachable
from the server host.

• The server cannot launch a render client. Check the server log for the launch
command used, and try to execute a simple application from the server host
using this launch command. It should run without user interaction. Check
that the render client is installed in the correct path. Pay attention to the
launch command quotes used to separate arguments on Windows. Check that
the same software versions, including Equalizer, are installed on all machines.

• A client can’t connect back to the application. Check the client log, this is
typically caused by a misconfigured host name resolution.

23

Part II.

Programming Guide
This Programming Guide introduces Equalizer using a top-down approach, starting
with a general introduction of the API in Section 5, followed by the simplified Sequel
API in Section 6 which implements common use cases to deliver a large subset of the
canonical Equalizer API introduced in Section 7. Section 8 introduces the separate
Collage network library used as the foundation for the distributed execution and
data synchronizing throughout Sequel and Equalizer.

5. Programming Interface

To modify an application for Equalizer, the programmer structures the source code
so that the OpenGL rendering can be executed in parallel, potentially using multiple
processes for cluster-based execution.

Equalizer uses a C++ programming interface. The API is minimally invasive.
Equalizer imposes only a minimal, natural execution framework upon the applica-
tion. It does not provide a scene graph, or interferes in any other way with the
application’s rendering code. The restructuring work enforced by Equalizer is the
minimal refactoring needed to parallelize the application for scalable, distributed
rendering.

The API documentation is available on the website or in the header files, and
provides a comprehensive documentation on individual methods, types and other
elements of the API. Methods marked with a specific version are part of the official,
public API and have been introduced by this Equalizer version. Reasonable care
is taken to not break API compatibility or change the semantics of these methods
within future Equalizer versions of the same major revision. Any changes to the
public API are documented in the release notes and the file CHANGES.txt.

In addition the official, public API Equalizer exposes a number of unstable meth-
ods and, where unavoidable, internal APIs. These are clearly marked in the API
documentation. Unstable methods may be used by the programmer, but their in-
terface or functionality may change in any future Equalizer version. The usage of
internal methods is discouraged. Undocumented or unversioned methods should be
considered as part of the unstable API.

5.1. Hello, World!

Figure 23: Hello, World!

The eqHello example is a minimal application to
illustrate the basic principle of any Equalizer ap-
plication: The application developer has to im-
plement a rendering method similar to the glut-
DisplayFunc in GLUT applications.

It can be run as a stand-alone application from
the command line or using an explicit configura-
tion file for a visualization cluster. In the stand-
alone case, any Equalizer application, including
eqHello, will automatically configure itself to use
all graphics cards found on the local system for
scalability.

24

5. Programming Interface

The eqHello example uses Sequel, a thin layer on top of the canonical Equal-
izer programming interface. Section 6 introduces Sequel in detail, and Section 7.1
introduces the full scope of the Equalizer API.

The main eqHello function instantiates an application object, initializes it, starts
the main loop and finally de-initializes the application:

int main (const int argc , char∗∗ argv)
{

eqHe l lo : : App l i cat ionPtr app = new eqHe l lo : : App l i ca t ion ;

i f (app−> i n i t (argc , argv , 0) && app−>run (0) && app−>e x i t ())
return EXIT SUCCESS ;

return EXIT FAILURE ;
}

The application object represents one process in the cluster. The primary applica-
tion instance has the rendering loop and controls all execution. All other instances
used for render client processes are passive and driven by Equalizer. The application
is responsible for creating the renderers, of which one per GPU is used:

class Appl i ca t ion : public seq : : App l i ca t ion
{
public :

virtual ˜ Appl i ca t ion () {}
virtual seq : : Renderer∗ createRenderer () { return new Renderer (∗ this) ; }

} ;
typedef lunchbox : : RefPtr< Appl i ca t ion > Appl i cat ionPtr ;

The renderer is responsible for executing the application’s rendering code. One
instance for each GPU is used. All calls to a single renderer are executed serially
and therefore thread-safe.

In eqHello, the renderer draws six colored quads. The only change from a standard
OpenGL application is the usage of the rendering context provided by Equalizer,
most notably the frustum and viewport. The rendering context is described in detail
in Section 7.1.8, and eqHello simply calls applyRenderContext which will execute the
appropriate OpenGL calls.

After setting up lighting, the model is positioned using applyModelMatrix. For
convenience, Sequel maintains one camera per view. The usage of this camera is
purely optional, an application can implement its own camera model.

The actual OpenGL code, rendering six colored quads, is omitted here for brevity:

void eqHe l lo : : Renderer : : draw (co : : Object∗ frameData)
{

applyRenderContext () ; // s e t up OpenGL Sta te

const f loat l i gh tPos [] = { 0 .0 f , 0 . 0 f , 1 . 0 f , 0 . 0 f } ;
g l L i g h t f v (GL LIGHT0 , GL POSITION, l i gh tPos) ;

const f loat l ightAmbient [] = { 0 .2 f , 0 . 2 f , 0 . 2 f , 1 . 0 f } ;
g l L i g h t f v (GL LIGHT0 , GL AMBIENT, l ightAmbient) ;

applyModelMatrix () ; // g l o b a l camera

// render s i x axis−a l i gned co lored quads around the o r i g i n

5.2. Namespaces

The Equalizer software stack is modularized, layering gradually more powerful, but
less generic APIs on top of each other. It furthermore relies on a number of required
and optional libraries. Application developers are exposed to the following name-
spaces:

25

5. Programming Interface

seq The core namespace for Sequel, the simple interface to the Equalizer client
library.

eq The core namespace for the Equalizer client library. The classes and their
relationship in this namespace closely model the configuration file format.
The classes in the eq namespace are the main subject of this Programming
Guide.Figure 25 provides an overview map of the most important classes in
the Equalizer namespace, grouped by functionality.

eq::util The eq::util namespace provides common utility classes, which often sim-
plify the usage of OpenGL functions. Most classes in this namespace are used
by the Equalizer client library, but are usable independently from Equalizer
for application development.

eq::admin The eq::admin namespace implements an administrative API to change
the configurations of a running server. This admin API is not yet finalized
and will very likely change in the future.

eq::fabric The eq::fabric namespace is the common data management and transport
layer between the client library, the server and the administrative API. Most
Equalizer client classes inherit from base classes in this namespace and have
all their data access methods in these base classes.

co Collage is the network library used by Equalizer. It provides basic functionality
for network communication, such as Connection and ConnectionSet, as well
as higher-level functionality such as Node, LocalNode, Object and Serializable.
Please refer to Section 8 for an introduction into the network layer, and to
Section 7.1.3 for distributed objects.

lunchbox The lunchbox library provides C++ classes to abstract the underlying
operating system and to implement common helper functionality for multi-
threaded applications. Examples are lunchbox::Clock providing a high-resolution
timer, or lunchbox::MTQueue providing a thread-safe, blocking FIFO. Classes
in this namespace are fully documented in the API documentation on the
Equalizer website, and are not subject of this Programming Guide.

hwloc, boost, vmmlib, hwsd External libraries providing manual and automatic
thread affinity, serialization and the foundation for RSP multicast, vector and
matrix mathematics as well as local and remote hardware (GPU, network
interfaces) discovery, respectively. The hwloc and hwsd libraries are used
only internally and are not exposed through the API.

eq::server The server namespace, implementing the functionality of the Equalizer
server, which is an internal namespace not to be used by application develop-
ers. The eq::admin namespace enables run-time administration of Equalizer
servers. The server does not yet expose a stable API.

eq::server
seq
eq eq::util

eq::fabric
Collage
Lunchboxhw

sd
vm

m
lib

bo
os

t
hw

lo
c

client server

Figure 24: Namespaces

The Equalizer examples are
implemented in their own
namespaces, e.g., eqPly or
eVolve. They rely mostly
on subclassing from the eq
namespace, with the occa-
sional usage of functionality
from the eq::util, eq::fabric,
co and lunchbox namespace.
Figure 24 shows the names-
paces and their layering.

26

5. Programming Interface

Frustum Description

Traversal Visitors

Compositing

Rendering Context

OS Abstraction

*

Client

Server

*
Config

*
Node

*
Pipe

*
Window

*
Channel

1
SystemWindow

agl::WindowIF wgl::WindowIF glx::WindowIF

agl::Window wgl::Window glx::Window

agl::Pipe wgl::Pipe glx::Pipe

agl::EventHandler
1

wgl::EventHandler
1

CommandQueue1

1 1

1 SystemPipe

MessagePump0, 1

agl::MessagePump

wgl::MessagePump

glx::MessagePump

Canvas Layout
* *

Segment
*

View
*

1

* RenderContext

1
PixelViewport

1
Viewport

1
ColorMask

GLWindow

DrawableConfig1

1
Eye

* Frame 1 FrameData

*
Image

NodeFactory

Observer
*

*

Pixel

Wall
0,1

Projection
0,1

SubpixelZoomRender
Resources

Compositor

wgl::WindowEvent

Event

wgl::WindowEventagl::WindowEvent

ConfigVisitor

PipeVisitor

CanvasVisitor

LayoutVisitor

ObserverVisitor

ViewVisitor

SegmentVisitor

WindowVisitor ChannelVisitor

NodeVisitor

Frustum

Range

glx::EventHandler
1

Figure 25: Equalizer client UML map

5.3. Task Methods

Methods called by the application have the form verb[Noun], whereas methods called
by Equalizer (‘Task Methods’) have the form nounVerb. For example, the applica-
tion calls Config::startFrame to render a new frame, which causes, among many other
things, Node::frameStart to be called in all active render clients.

The application inherits from Equalizer classes and overrides virtual functions
to implement certain functionality, e.g., the application’s OpenGL rendering in
eq::Channel::frameDraw. These task methods are similar in concept to C function
callbacks. Section 7.1 will discuss the important task methods. A full list can be
found on the website18.

5.4. Execution Model and Thread Safety

Using threading correctly in OpenGL-based applications is easy with Equalizer.
Equalizer creates one rendering thread for each graphics card. All task methods for
a pipe, and therefore all OpenGL commands, are executed from this thread. This
threading model follows the OpenGL ‘threading model’, which maintains a current
context for each thread. If structured correctly, the application rarely has to take
care of thread synchronization or protection of shared data.

18see http://www.equalizergraphics.com/documents/design/taskMethods.html

27

http://www.equalizergraphics.com/documents/design/taskMethods.html

6. The Sequel Simple Equalizer API

The main thread is responsible for maintaining the application logic. It reacts
on user events, updates the data model and requests new frames to be rendered. It
drives the whole application, as shown in Figure 26.

Application

init send tasks

trigger new
frame

wait for frame
finish

handle events

update
database

exit

Server Render Clients

init

send
render tasks

execute
render tasks

sync frame
finish

send tasks exit

idle
processing

Figure 26: Simplified Execution Model

The rendering threads con-
currently render the applica-
tion’s database. The data-
base should be accessed in
a read-only fashion during
rendering to avoid threading
problems. This is normally
the case, for example all mod-
ern scene graphs use read-
only render traversals, writ-
ing the GPU-specific informa-
tion into a separate per-GPU
data structure.

All rendering threads in
the configuration run asyn-
chronously to the applica-
tion’s main thread. Depend-
ing on the configuration’s la-
tency, they can fall n frames
behind the last frame finished
by the application thread. A latency of one frame is usually not perceived by the
user, but can increase rendering performance substantially since operations can be
better pipelined.

Rendering threads on a single node are synchronized when using the default
thread model draw sync. When a frame is finished, all local rendering threads are
done drawing. Therefore the application can safely modify the data between the
end of a frame and the beginning of a new frame. Furthermore, only one instance
of the scene data has to be maintained within a process, since all rendering threads
are guaranteed to draw the same frame.

This per-node frame synchronization does not inhibit latency across rendering
nodes. Furthermore, advanced rendering software which multi-buffers the dynamic
parts of the database can disable the per-node frame synchronization, as explained
in Section 7.2.3. Some scene graphs implement multi-buffered data, and can profit
from relaxing the local frame synchronization.

6. The Sequel Simple Equalizer API

In this section the source code of seqPly is used to introduce the Sequel API in detail,
and relevant design decisions, caveats and other remarks are discussed. Sequel is
conceived to lower the entry barrier into creating parallel rendering applications
without sacrificing major functionality. It implements proven design patterns of
Equalizer applications. Sequel does not prohibit the usage of Equalizer or Collage
functionality, it simply makes it easier to use for the common use cases.

The seqPly parallel renderer provides a subset of features found in its cousin
application, eqPly, introduced in the next section. It is more approachable, using
approximately one tenth of the source code needed by eqPly due to the use of the
Sequel abstraction layer and reduced functionality.

28

6. The Sequel Simple Equalizer API

6.1. main Function

The main function is almost identical to eqHello. It instantiates an application
object, initializes it, starts the main loop and finally de-initializes the application.
The source code is not reproduced here due to its similarity with Section 5.1.

6.2. Application

The application object in Sequel represents one process in the cluster. The main
application instance has the rendering loop and controls all execution. All other
instances used for render client processes are passive and driven by Equalizer.

Sequel applications derive their application object from seq::Application and selec-
tively override functionality. They have to implement createRenderer, as explained
below. The seqPly application overrides init, exit, run and implements createRen-
derer.

The initialization and exit routines are overwritten to parse seqPly-specific com-
mand line options and to load and unload the requested model:

bool Appl i ca t ion : : i n i t (const int argc , char∗∗ argv)
{

const eq : : S t r i n g s& models = parseArguments (argc , argv) ;
i f (! seq : : App l i ca t ion : : i n i t (argc , argv , 0))

return fa l se ;

loadModel (models) ;
return true ;

}

bool Appl i ca t ion : : e x i t ()
{

unloadModel () ;
return seq : : App l i ca t ion : : e x i t () ;

}

Sequel manages distributed objects, simplifying their use. This includes regis-
tration, automatic creation and mapping as well as commit and synchronization
of objects. One special object for initialization (not used in seqPly) and one for
per-frame data are managed by Sequel, in addition to an arbitrary number of
application-specific objects.

The objects passed to seq::Application::init and seq::Application::run are automat-
ically distributed and instantiated on the render clients, and then passed to the
respective task callback methods. The application may pass a 0 pointer if it does
not need an object for initialization or per-frame data. Objects are registered with
a type, and when automatically created, the createObject method on the application
or renderer is used to create an instance based on this type.

The run method is overloaded to pass the frame data object to the Sequel appli-
cation run loop. The object will be distributed and synchronized to all renderers:

bool Appl i ca t ion : : run ()
{

return seq : : App l i ca t ion : : run (& frameData) ;
}

The application is responsible for creating renderers. Sequel will request one
renderer for each GPU rendering thread. Sequel also provides automatic mapping
and synchronization of distributed objects, for which the application has to provide
a creation callback:

seq : : Renderer∗ Appl i ca t ion : : c reateRenderer ()
{

return new Renderer (∗ this) ;

29

6. The Sequel Simple Equalizer API

}

co : : Object∗ Appl i ca t ion : : c r ea teObjec t (const u i n t 3 2 t type)
{

switch (type)
{

case seq : :OBJECTTYPE FRAMEDATA:
return new eqPly : : FrameData ;

default :
return seq : : App l i ca t ion : : c r ea teObjec t (type) ;

}
}

6.3. Renderer

The renderer is responsible for executing the application’s rendering code. One
instance for each GPU is used. All calls to a single renderer are executed serially
and therefore thread-safe.

The seqPly rendering code uses the same data structure and algorithm as eqPly,
described in Section 7.1.8. This renderer captures the GPU-specific data in a State
object, which is created and destroyed during init and exit. The state captures
also the OpenGL function table, which is available when init is called, but not yet
during the constructor of the renderer:

bool Renderer : : i n i t (co : : Object∗ i n i tData)
{

s t a t e = new State (glewGetContext ()) ;
return seq : : Renderer : : i n i t (in i tData) ;

}

bool Renderer : : e x i t ()
{

s t a t e−>d e l e t e A l l () ;
delete s t a t e ;

s t a t e = 0 ;
return seq : : Renderer : : e x i t () ;

}

The rendering code is similar to the typical OpenGL rendering code, except for
a few modifications to configure the rendering. First, the render context is applied
and lighting is set up. The render context, described in detail in Section 7.1.8, sets
up the stereo buffer, 3D viewport as well as the projection and view matrices using
the appropriate OpenGL calls. Applications can also retrieve the render context
and apply the settings themselves:

applyRenderContext () ;

g l L i g h t f v (GL LIGHT0 , GL POSITION, l i g h t P o s i t i o n) ;
g l L i g h t f v (GL LIGHT0 , GL AMBIENT, l ightAmbient) ;
g l L i g h t f v (GL LIGHT0 , GL DIFFUSE, l i g h t D i f f u s e) ;
g l L i g h t f v (GL LIGHT0 , GL SPECULAR, l i g h t S p e c u l a r) ;

g l M a t e r i a l f v (GL FRONT, GL AMBIENT, materialAmbient) ;
g l M a t e r i a l f v (GL FRONT, GL DIFFUSE, m a t e r i a l D i f f u s e) ;
g l M a t e r i a l f v (GL FRONT, GL SPECULAR, mate r i a lSpecu la r) ;
g l M a t e r i a l i (GL FRONT, GL SHININESS , m a t e r i a l S h i n i n e s s) ;

After the static light setup, the model matrix is applied to the existing view
matrix, completing the modelview matrix and positioning the model. Sequel main-
tains a per-view camera, which is modified through mouse and keyboard events
and determines the model matrix. Applications can overwrite this event handling
and maintain their own camera model. Afterwards, the state is set up with the

30

7. The Equalizer Parallel Rendering Framework

projection-modelview matrix for view frustum culling, the DB range for sort-last
rendering and the cull-draw traversal is executed, as described in Section 7.1.8:

applyModelMatrix () ;

g l C o l o r 3 f (. 75 f , . 75 f , . 75 f) ;

// Compute c u l l matrix
const eq : : Matr ix4f& modelM = getModelMatrix () ;
const eq : : Matr ix4f& view = getViewMatrix () ;
const eq : : Frustumf& frustum = getFrustum () ;
const eq : : Matr ix4f p r o j e c t i o n = frustum . compute matrix () ;
const eq : : Matr ix4f pmv = p r o j e c t i o n ∗ view ∗ modelM ;
const seq : : RenderContext& context = getRenderContext () ;

s t a t e−>setProject ionModelViewMatr ix (pmv) ;
s t a t e−>setRange (&context . range . s t a r t) ;
s t a t e−>s e t Co l o r s (model−>hasColors ()) ;

model−>cullDraw (∗ s t a t e) ;

7. The Equalizer Parallel Rendering Framework

The core Equalizer client library exposes the full feature set and flexibility to the
application developer. New application development is encouraged to use the Sequel
library, and inquire on the eq-dev mailing list when specific functionality is not avail-
able in Sequel. Only advanced and complex applications should be implemented
using the Equalizer client library directly.

7.1. The eqPly Polygonal Renderer

In this section the source code of eqPly is used to introduce the Equalizer API in
detail, and relevant design decisions, caveats and other remarks are discussed.

eqPly is a parallel renderer for polygonal data in the ply file format. It supports
nearly all Equalizer features, and can be used to render on large-scale displays,
immersive environments with head tracking and to render massive data sets using
all scalable rendering features of Equalizer. It is a superset of seqPly, introduced in
Section 6.

The eqPly example is shipped with the Equalizer distribution and serves as a ref-
erence implementation of an Equalizer-based application of medium complexity. It
focuses on the example usage of core Equalizer features, not on advanced rendering
features or visual quality.

Figure 27 shows how the most important Equalizer classes are used through
inheritance by the eqPly example. All classes in the example are in the eqPly
namespace to avoid type name ambiguities, in particular for the Window class which
is frequently used as a type in the global namespace by windowing systems.

The eqPly classes fall into two categories: Subclasses of the rendering entities
introduced in Section 3, and classes for distributing data.

The function and typical usage for each of the rendering entities is discussed in
this section. Each of these classes inherits from a base class in the eq::fabric name-
space, which implements data distribution for the entity. The fabric base classes
are omitted in Figure 27.

The distributed data classes are helper classes based on co::Serializable or its base
class co::Object. They illustrate the typical usage of distributed objects for static
as well as dynamic, frame-specific data. Furthermore they are used for a basic
scene graph distribution of the model data to the render client processes. Section 8
provides more background on the Collage network library.

31

7. The Equalizer Parallel Rendering Framework

connect
registerObject
deregisterObject
mapObject
unmapObject

LocalNode

configInit
frameDraw
frameReadback
frameViewFinish

Channel

connectServer
disconnectServer

Client

chooseConfig
releaseConfig

Server

init
exit
startFrame
finishFrame
handleEvents

Config

configInit
configExit

Node

configInit
configExit
frameStart

Pipe

configInit
configExit

Window

run
EqPly

init
exit
startFrame
handleEvent

Config

configInit
configExit

Node

configInitGL
configExitGL
frameStart

Pipe

configInit
configExit

Window

commit
sync

getInstanceData
applyInstanceData

pack
unpack

Object

getInstanceData
applyInstanceData

InitData

eq namespaceeqPly namespace co namespace

serialize
deserialize
setDirty

Serializable

serialize
deserialize

FrameData

VertexBufferDist

Layout

useLayout
Canvas

View

Segment

getModelID
View::Proxy

*

*

* **

*
* *

*

*

1

1

1

*

send
Node

*

*

configInit
configExit
frameClear
frameDraw
frameReadback
frameAssemble
frameViewStart
frameViewFinish

Channel

Figure 27: UML Diagram eqPly and relevant Equalizer Classes

7.1.1. main Function

The main function starts off with initializing the Equalizer library. The command
line arguments are passed on to Equalizer. They are used to set certain default
values based on Equalizer-specific options19, e.g., the default server address. Fur-
thermore, a NodeFactory is provided. The EQERROR macro, and its counterparts
EQWARN, EQINFO and EQVERB allow selective debugging outputs with various
logging levels:

int main (const int argc , char∗∗ argv)
{

// 1 . Equa l i z e r i n i t i a l i z a t i o n
NodeFactory nodeFactory ;
eqPly : : i n i t E r r o r s () ;

i f (! eq : : i n i t (argc , argv , &nodeFactory))
{

LBERROR << ” Equa l i z e r i n i t f a i l e d ” << std : : endl ;
return EXIT FAILURE ;

}

19Equalizer-specific options always start with - -eq-

32

7. The Equalizer Parallel Rendering Framework

The node factory is used by Equalizer to create the object instances of the config-
ured rendering entities. Each of the classes inherits from the same type provided by
Equalizer in the eq namespace. The provided eq::NodeFactory base class instantiates
’plain’ Equalizer objects, thus making it possible to selectively subclass individual
entity types, as it is done by eqHello. For each rendering resources used in the
configuration, one C++ object will be created during initialization. Config, node
and pipe objects are created and destroyed in the node thread, whereas window
and channel objects are created and destroyed in the pipe thread:

class NodeFactory : public eq : : NodeFactory
{
public :

virtual eq : : Conf ig ∗ c r ea t eCon f i g (eq : : ServerPtr parent)
{ return new eqPly : : Conf ig (parent) ; }

virtual eq : : Node∗ createNode (eq : : Conf ig ∗ parent)
{ return new eqPly : : Node (parent) ; }

virtual eq : : Pipe∗ c r ea teP ipe (eq : : Node∗ parent)
{ return new eqPly : : Pipe (parent) ; }

virtual eq : : Window∗ createWindow (eq : : Pipe∗ parent)
{ return new eqPly : : Window(parent) ; }

virtual eq : : Channel∗ createChannel (eq : : Window∗ parent)
{ return new eqPly : : Channel (parent) ; }

virtual eq : : View∗ createView (eq : : Layout∗ parent)
{ return new eqPly : : View (parent) ; }

} ;

The second step is to parse the command line into the LocalInitData data struc-
ture. A part of it, the base class InitData, will be distributed to all render client
nodes. The command line parsing is done by the LocalInitData class, which is dis-
cussed in Section 7.1.3:

// 2 . parse arguments
eqPly : : Loca l In i tData in i tData ;
in i tData . parseArguments (argc , argv) ;

The third step is to create an instance of the application and to initialize it locally.
The application is a subclass of eq::Client, which in turn is an co::LocalNode. The
underlying Collage network library, discussed in Section 8, is a peer-to-peer network
of co::LocalNodes. The client-server concept is implement the higher-level eq client
namespace.

The local initialization of a node creates at least one local listening socket, which
allows the eq::Client to communicate over the network with other nodes, such as the
server and the rendering clients. The listening socket(s) can be configured using
the –eq-listen command line parameter, by adding connections to the appNode in
the configuration file, or by programmatically adding connection descriptions to the
client before the local initialization:

// 3 . i n i t i a l i z a t i o n o f l o c a l c l i e n t node
lunchbox : : RefPtr< eqPly : : EqPly > c l i e n t = new eqPly : : EqPly (in i tData) ;
i f (! c l i e n t−>i n i t L o c a l (argc , argv))
{

LBERROR << ”Can ’ t i n i t c l i e n t ” << std : : endl ;
eq : : e x i t () ;
return EXIT FAILURE ;

}

Finally everything is set up, and the eqPly application is executed:

// 4 . run c l i e n t
const int r e t = c l i e n t−>run () ;

After the application has finished, it is de-initialized and the main function re-
turns:

33

7. The Equalizer Parallel Rendering Framework

// 5 . c leanup and e x i t
c l i e n t−>e x i t L o c a l () ;

LBASSERTINFO(c l i e n t−>getRefCount () == 1 , c l i e n t) ;
c l i e n t = 0 ;

eq : : e x i t () ;
eqPly : : e x i t E r r o r s () ;
return r e t ;

}

7.1.2. Application

In the case of eqPly, the application is also the render client. The eqPly executable
has three runtime behaviors:

1. Application: The executable started by the user, the controlling entity of
the rendering session.

2. Auto-launched render client: The typical render client, started by the
server. The server starts the executable with special parameters, which cause
Client::initLocal to never return. During exit, the server terminates the process.
By default, the server starts the render client using ssh. The launch command
can be used to configure another program to auto-launch render clients.

3. Resident render client: Manually prestarted render client, listening on a
specified port for server commands. This mode is selected using the command-
line option –eq-client and –eq-listen <address> to specify a well-defined lis-
tening address, and potentially -r to keep the client running across multiple
runs20.

Main Loop The application’s main loop starts by connecting the application to an
Equalizer server. If no server is specified, Client::connectServer tries first to connect
to a server on the local machine using the default port. If that fails, it will create a
server running within the application process using auto-configuration as described
in Section 3.1.2. The command line parameter –eq-config can be used to specify
a hwsd session or configuration file, and –eq-server to explicitly specify a server
address.

int EqPly : : run ()
{

// 1 . connect to s e rve r
eq : : ServerPtr s e r v e r = new eq : : Server ;
i f (! connectServer (s e r v e r))
{

LBERROR << ”Can ’ t open s e r v e r ” << std : : endl ;
return EXIT FAILURE ;

}

The second step is to ask the server for a configuration. The ConfigParams are
a placeholder for later Equalizer implementations to provide additional hints and
information to the server for auto-configuration. The configuration chosen by the
server is created locally using NodeFactory::createConfig. Therefore it is of type
eqPly::Config, but the return value is eq::Config, making the static cast necessary:

// 2 . choose con f i g
eq : : f a b r i c : : ConfigParams configParams ;
Conf ig ∗ c o n f i g = static cast<Config∗>(s e rver−>chooseConf ig (configParams)) ;

20see http://www.equalizergraphics.com/documents/design/residentNodes.html

34

http://www.equalizergraphics.com/documents/design/residentNodes.html

7. The Equalizer Parallel Rendering Framework

i f (! c o n f i g)
{

LBERROR << ”No matching c o n f i g on s e r v e r ” << std : : endl ;
d i s connec tSe rve r (s e r v e r) ;
return EXIT FAILURE ;

}

Finally it is time to initialize the configuration. For statistics, the time for this
operation is measured and printed. During initialization the server launches and
connects all render client nodes, and calls the appropriate initialization task meth-
ods, as explained in later sections. Config::init returns after all nodes, pipes, windows
and channels are initialized.

The return value of Config::init depends on the configuration robustness attribute.
This attribute is set by default, allowing configurations to launch even when some
entities failed to initialize. If set, Config::init always returns true. If deactivated, it
returns true only if all initialization task methods were successful. In any case, Con-
fig::getError only returns ERROR NONE if all entities have initialized successfully.

The EQLOG macro allows topic-specific logging. The numeric topic values are
specified in the respective log.h header files, and logging for various topics is enabled
using the environment variable EQ LOG TOPICS:

// 3 . i n i t con f i g
lunchbox : : Clock c l o ck ;

con f i g−>s e t In i tData (i n i t Da ta) ;
i f (! con f i g−> i n i t ())
{

LBWARN << ” Error during i n i t i a l i z a t i o n : ” << con f i g−>getError ()
<< std : : endl ;

s e rver−>r e l e a s e C o n f i g (c o n f i g) ;
d i s connec tSe rve r (s e r v e r) ;
return EXIT FAILURE ;

}
i f (con f i g−>getError ())

LBWARN << ” Error during i n i t i a l i z a t i o n : ” << con f i g−>getError ()
<< std : : endl ;

LBLOG(LOG STATS) << ” Config i n i t took ” << c l o ck . getTimef () << ” ms”
<< std : : endl ;

When the configuration was successfully initialized, the main rendering loop is
executed. It runs until the user exits the configuration, or when a maximum number
of frames has been rendered, specified by a command-line argument. The latter is
useful for benchmarks. The Clock is reused for measuring the overall performance.
A new frame is started using Config::startFrame and a frame is finished using Con-
fig::finishFrame.

When a new frame is started, the server computes all rendering tasks and sends
them to the appropriate render client nodes. The render client nodes dispatch the
tasks to the correct node or pipe thread, where they are executed in order of arrival.

Config::finishFrame blocks on the completion of the frame current - latency. The
latency is specified in the configuration file, and allows several outstanding frames.
This allows overlapping execution in the node processes and pipe threads and min-
imizes idle times.

By default, Config::finishFrame also synchronizes the completion of all local ren-
dering tasks for the current frame. This facilitates porting of existing rendering
codes, since the database does not have to be multi-buffered. Applications such
as eqPly, which do not need this per-node frame synchronization, can disable it as
explained in Section 7.2.3:

// 4 . run main loop

35

7. The Equalizer Parallel Rendering Framework

u i n t 3 2 t maxFrames = in i t Da ta . getMaxFrames () ;
int lastFrame = 0 ;

c l o ck . r e s e t () ;
while (con f i g−>isRunning () && maxFrames−−)
{

con f i g−>startFrame () ;
i f (con f i g−>getError ())

LBWARN << ” Error during frame s t a r t : ” << con f i g−>getError ()
<< std : : endl ;

con f i g−>f in i shFrame () ;

Figure 28 shows the execution of the rendering tasks of a 2-node 2D compound
without latency and with a latency of one frame. The asynchronous execution
pipelines certain rendering operations and hides imbalances in the load distribution,
resulting in an improved framerate. For example, we have observed a speedup of
15% on a five-node rendering cluster when using a latency of one frame instead of
no latency21. A latency of one or two frames is normally not perceived by the user.
The statistics overlay is explained in detail in Section 7.2.11.

frame
before last last frame

AsynchronousSynchronous

idle

wait

frame
before last

last frame

Figure 28: Synchronous and Asynchronous Execution

When playing a camera animation, eqPly prints the rendering performance once
per animation loop for benchmarking purposes:

i f (con f i g−>getAnimationFrame () == 1)
{

const f loat time = c lock . re se tTimef () ;
const s i z e t nFrames = con f ig−>getFinishedFrame () − lastFrame ;
lastFrame = con f ig−>getFinishedFrame () ;

LBLOG(LOG STATS) << time << ” ms f o r ” << nFrames << ” frames @ ”
<< (nFrames / time ∗ 1000 . f) << ” FPS) ”
<< std : : endl ;

}

eqPly uses event-driven execution, that is, it only request new rendering frames
if an event or animation requires an update. The eqPly::Config maintains a dirty
state, which is cleared after a frame has been started, and set when an event causes
a redraw. Furthermore, when an animation is running or head tracking is active,
the config always signals the need for a new frame.

If the application detects that it is currently idle, all pending commands are
gradually flushed, while still looking for a redraw event. Then it waits and handles
one event at a time, until a redraw is needed:

while (! con f i g−>needRedraw ()) // wait f o r an event r e qu i r i n g redraw
{

i f (hasCommands()) // execute non−c r i t i c a l pending commands
{

processCommand () ;
con f i g−>handleEvents () ; // non−b l o c k i n g

}

21http://www.equalizergraphics.com/scalability.html

36

http://www.equalizergraphics.com/scalability.html

7. The Equalizer Parallel Rendering Framework

else // no pending commands , b l o c k on user event
{

const eq : : EventICommand& event = con f ig−>getNextEvent () ;
i f (! con f i g−>handleEvent (event))

LBVERB << ”Unhandled ” << event << std : : endl ;
}

}
con f i g−>handleEvents () ; // process a l l pending event s

When the main rendering loop has finished, Config::finishAllFrames is called to
catch up with the latency. It returns after all outstanding frames have been ren-
dered, and is needed to provide an accurate measurement of the framerate:

const u i n t 3 2 t frame = con f ig−>f i n i shAl lFrames () ;
const f loat time = c lock . re se tTimef () ;
const s i z e t nFrames = frame − lastFrame ;
LBLOG(LOG STATS) << time << ” ms f o r ” << nFrames << ” frames @ ”

<< (nFrames / time ∗ 1000 . f) << ” FPS) ” << std : : endl ;

The remainder of the application code cleans up in the reverse order of initializa-
tion. The config is exited, released and the connection to the server is closed:

// 5 . e x i t con f i g
c l o ck . r e s e t () ;
con f i g−>e x i t () ;
LBLOG(LOG STATS) << ” Exit took ” << c l o ck . getTimef () << ” ms” <<std : : endl ;

// 6 . c leanup and e x i t
s e rver−>r e l e a s e C o n f i g (c o n f i g) ;
i f (! d i s connec tSe rve r (s e r v e r))

LBERROR << ” Cl i en t : : d i s connec tSe rve r f a i l e d ” << std : : endl ;

return EXIT SUCCESS ;
}

Render Clients In the second and third use case of the eqPly, when the executable
is used as a render client, Client::initLocal never returns. Therefore the application’s
main loop is never executed. To keep the client resident, the eqPly example overrides
the client loop to keep it running beyond one configuration run:

void EqPly : : c l i en tLoop ()
{

do
{

eq : : C l i en t : : c l i en tLoop () ;
LBINFO << ” Conf igurat ion run s u c c e s s f u l l y executed ” << std : : endl ;

}
while (i n i t Da ta . i s R e s i d e n t ()) ; // execute at l e a s t one con f i g run

}

7.1.3. Distributed Objects

Equalizer provides distributed objects which facilitate the implementation of data
distribution in a cluster environment. Distributed objects are created by subclassing
from co::Serializable or co::Object. The application programmer implements serial-
ization and deserialization of the distributed data. Section 8.4 covers distributed
objects in detail.

Distributed objects can be static (immutable) or dynamic. Dynamic objects are
versioned. The eqPly example uses static distributed objects to provide initial data
and the model to all rendering nodes, as well as a versioned object to provide
frame-specific data such as the camera position to the rendering methods.

37

7. The Equalizer Parallel Rendering Framework

InitData - a Static Distributed Object The InitData class holds a couple of pa-
rameters needed during initialization. These parameters never change during one
configuration run, and are therefore static.

On the application side, the class LocalInitData subclasses InitData to provide
the command line parsing and to set the default values. The render nodes only
instantiate the distributed part in InitData.

A static distributed object has to implement getInstanceData and applyInstance-
Data to serialize and deserialize the object’s distributed data. These methods pro-
vide an output or input stream as a parameter, which abstracts the data transmis-
sion and can be used like a std::stream.

The data streams implement efficient buffering and compression, and automati-
cally select the best connection, i.e., multicast where available, for data transport.
They perform no type checking or transformation on the data. It is the application’s
responsibility to exactly match the order and types of variables during serialization
and de-serialization.

Custom data type serializers can be implemented by providing the appropriate
serialization functions. No pointers should be directly transmitted through the data
streams. For pointers, the corresponding object is typically a distributed object as
well, and its identifier and potentially version is transmitted in place of its pointer.

For InitData, serialization in getInstanceData and de-serialization in applyInstance-
Data is performed by streaming all member variables to or from the provided data
streams:

void In i tData : : get InstanceData (co : : DataOStream& os)
{

os << frameDataID << windowSystem << renderMode << useGLSL << invFaces
<< l o g o << r o i ;

}

void In i tData : : applyInstanceData (co : : DataIStream& i s)
{

i s >> frameDataID >> windowSystem >> renderMode >> useGLSL >> invFaces
>> l o g o >> r o i ;

LBASSERT(frameDataID != 0) ;
}

FrameData - a Versioned Distributed Object Versioned objects have to override
getChangeType to indicate how they want to have changes to be handled. All types
of versioned objects currently implemented have the following characteristics:

• The master instance of the object generates new versions for all slaves. These
versions are continuous, starting at co::VERSION FIRST. It is possible to com-
mit on slave instances, but special care has to be taken to handle possible
conflicts. Section 8.4.4 covers slave object commits in detail.

• Slave instance versions can only be advanced, that is, sync(version) with a
version smaller than the current version will fail.

• Newly mapped slave instances are mapped to the oldest available version by
default, or to the version specified when calling mapObject.

Upon commit the delta data from the previous version is sent to all mapped
slave instances. The data is queued on the remote node, and is applied when the
application calls sync to synchronize the object to a new version. The sync method
might block if a version has not yet been committed or is still in transmission.

Not syncing a mapped, versioned object creates a memory leak. The method
Object::notifyNewHeadVersion is called whenever a new version is received by the

38

7. The Equalizer Parallel Rendering Framework

node. The notification is send from the command thread, which is different from
the node main thread. The object should not be synced from this method, but
instead a message may be send to the application, which then takes the appropriate
action. The default implementation asserts when too many versions have been
queued to detect memory leaks during development.

Besides the instance data (de-)serialization methods used to map an object,
versioned objects may implement pack and unpack to serialize or de-serialize the
changes since the last version. If these methods are not implemented, their de-
fault implementation forwards the (de-)serialization request to getInstanceData and
applyInstanceData, respectively.

serialize
deserialize

setDirty
isDirty

_dirtyBits
co::Serializable

commit
sync
getChangeType

getInstanceData
applyInstanceData
pack
unpack

getVersion
getHeadVersion
notifyNewHeadVersion

_id
co::Object

Figure 29: co::Serializable and
co::Object

The creation of distributed, versioned objects
is simplified when using co::Serializable, which
implements one common way of tracking data
changes in versioned objects. The concept of
a dirty bit mask is used to mark parts of the
object for serialization, while preserving the ca-
pability to inherit objects. Other ways of im-
plementing change tracking, e.g., using incarna-
tion counters, can still be implemented by using
co::Object which leaves all flexibility to the devel-
oper. Figure 29 shows the relationship between
co::Serializable and co::Object.

The FrameData is sub-classed from Serializable,
and consequently tracks its changes by setting the
appropriate dirty bit whenever it is changed. The serialization methods are called
by the co::Serializable with the dirty bit mask needed to serialize all data, or with
the dirty bit mask of the changes since the last commit. The FrameData only defines
its own dirty bits and serialization code:

/∗∗ The changed par t s o f the data s ince the l a s t pack () . ∗/
enum Dir tyBi t s
{

DIRTY CAMERA = co : : S e r i a l i z a b l e : : DIRTY CUSTOM << 0 ,
DIRTY FLAGS = co : : S e r i a l i z a b l e : : DIRTY CUSTOM << 1 ,
DIRTY VIEW = co : : S e r i a l i z a b l e : : DIRTY CUSTOM << 2 ,
DIRTY MESSAGE = co : : S e r i a l i z a b l e : : DIRTY CUSTOM << 3 ,

} ;

void FrameData : : s e r i a l i z e (co : : DataOStream& os , const u i n t 6 4 t d i r t y B i t s)
{

co : : S e r i a l i z a b l e : : s e r i a l i z e (os , d i r t y B i t s) ;
i f (d i r t y B i t s & DIRTY CAMERA)

os << p o s i t i o n << r o t a t i o n << modelRotation ;
i f (d i r t y B i t s & DIRTY FLAGS)

os << modelID << renderMode << colorMode << q u a l i t y << or tho
<< s t a t i s t i c s << he lp << wire f rame << pi lotMode << i d l e
<< compress ion ;

i f (d i r t y B i t s & DIRTY VIEW)
os << currentViewID ;

i f (d i r t y B i t s & DIRTY MESSAGE)
os << message ;

}

void FrameData : : d e s e r i a l i z e (co : : DataIStream& is , const u i n t 6 4 t d i r t y B i t s)
{

co : : S e r i a l i z a b l e : : d e s e r i a l i z e (i s , d i r t y B i t s) ;
i f (d i r t y B i t s & DIRTY CAMERA)

i s >> p o s i t i o n >> r o t a t i o n >> modelRotation ;
i f (d i r t y B i t s & DIRTY FLAGS)

i s >> modelID >> renderMode >> colorMode >> q u a l i t y >> or tho
>> s t a t i s t i c s >> he lp >> wire f rame >> pi lotMode >> i d l e

39

7. The Equalizer Parallel Rendering Framework

>> compress ion ;
i f (d i r t y B i t s & DIRTY VIEW)

i s >> currentViewID ;
i f (d i r t y B i t s & DIRTY MESSAGE)

i s >> message ;
}

Scene Data Some applications rely on a shared filesystem to access the data, for
example when out-of-core algorithms are used. Other applications prefer to load
the data only on the application process, and use distributed objects to synchronize
the scene data with the render clients.

eqPly chooses the second approach, using static distributed objects to distribute
the model loaded by the application. It can be easily extended to versioned objects
to support dynamic data modifications.

The kD-tree data structure and rendering code for the model is strongly sepa-
rated from Equalizer, and kept in the separate namespace mesh. It can also be
used in other rendering software, for example in a GLUT application. To keep
this separation while implementing data distribution, an external ’mirror’ hierar-
chy is constructed aside the kD-tree. This hierarchy of VertexBufferDist nodes is
responsible for cloning the model data on the remote render clients.

The identifier of the model’s root object of this distributed hierarchy is passed as
part of the InitData for the default model, or as part of the View for each logical view.
It is used on the render clients to map the model when it is needed for rendering.

left, right child
VertexBufferNode

vertex data
VertexBufferRoot

bounding sphere
range

VertexBufferBase

vertex indices
bounding box

VertexBufferLeaf

VertexBufferBase
left, right child

VertexBufferDist

co::Object
namespace eqPly

namespace mesh

modelID
...

InitData

Figure 30: Scene Data in eqPly

Figure 30 shows the UML hierarchy of the
model and distribution classes. Section 8.4 il-
lustrates other approaches to employ distributed
objects for data distribution and synchronization.

Each VertexBufferDist object corresponds to
one node of the model’s data tree. It is serializing
the data for this node. Furthermore, it mirrors
the kD-tree by having a VertexBufferDist child for
each child of its corresponding tree node. Dur-
ing serialization, the identifier of these children is
sent to the remote nodes, which reconstruct the
mirror distribution hierarchy and model data tree
based on this data.

The serialization function getInstanceData
sends all the data needed to reconstruct the model
tree: the object identifiers of its children, vertex
data for the tree root and vertex indices for the
leaf nodes, as well as the bounding sphere and database range of each node. The
deserialization function applyInstanceData retrieves the data in multiple steps, and
constructs the model tree on the fly based on this information. It is omitted here
for brevity:

void VertexBuf f e rDi s t : : get InstanceData (co : : DataOStream& os)
{

LBASSERT(node) ;
os << i sRoot ;

i f (l e f t && r i g h t)
{

os << l e f t −>getID () << r i g h t−>getID () ;

i f (i sRoot)
{

LBASSERT(r o o t) ;

40

7. The Equalizer Parallel Rendering Framework

const mesh : : VertexBufferData& data = root−> data ;

os << data . v e r t i c e s << data . c o l o r s << data . normals << data . i n d i c e s
<< root−> name ;

}
}
else
{

os << co : : UUID() << co : : UUID () ;

LBASSERT(dynamic cast< const mesh : : VertexBuf fe rLea f ∗ >(node)) ;
const mesh : : VertexBuf fe rLea f ∗ l e a f =

static cast< const mesh : : VertexBuf fe rLea f ∗ >(node) ;

os << l e a f−> boundingBox [0] << l e a f−> boundingBox [1]
<< u i n t 6 4 t (l e a f−> v e r t e x S t a r t) << u i n t 6 4 t (l e a f−> i ndexS ta r t)
<< u i n t 6 4 t (l e a f−> indexLength) << l e a f−> vertexLength ;

}

os << node−> boundingSphere << node−> range ;
}

_frameDataID
InitData

_sceneID
_sceneVersion
_cameraData

FrameData

_childIDs
_childVersions

SceneGraphRoot

...
SceneGraphNode...

SceneGraphNode...
SceneGraphNode

Application

Config::init(ID)

Render Clients

Node::configInit(ID)

Config::
startFrame(version)

...
...

Distributed Objects

frameStart(version)

Figure 31: Scene Graph Distribution

Applications distributing a
dynamic scene graph use the
frame data instead of the
init data as the entry point
to their scene graph data
structure. Figure 31 shows
one possible implementation,
where the identifier and ver-
sion of the scene graph root
are transported using the
frame data. The scene graph
root then serializes and de-
serializes his immediate chil-
dren by transferring their
identifier and current version,
similar to the static distribu-
tion done by eqPly.

The objects are still cre-
ated by the application, and
then registered or mapped
with the session to distribute
them. When mapping ob-
jects in a hierarchical data
structure, their type often has
to be known to create them.
Equalizer does not currently
provide object typing, this
has to be done by the application, either implicitly in the current implementa-
tion context, or by transferring a type identifier. In eqPly, object typing is implicit
since it is well-defined which object is mapped in which context.

7.1.4. Config

The eq::Config class is driving the application’s rendering, that is, it is responsible for
updating the data based on received events, requesting new frames to be rendered
and to provide the render clients with the necessary data.

41

7. The Equalizer Parallel Rendering Framework

Initialization and Exit The config initialization happens in parallel, that is, all
config initialization tasks are transmitted by the server at once and their completion
is synchronized afterwards.

The tasks are executed by the node and pipe threads in parallel. The parent’s
initialization methods are always executed before any child initialization method.
This parallelization allows a speedy startup on large-scale graphics clusters. On
the other hand, it means that initialization functions are called even if the par-
ent’s initialization has failed. Figure 32 shows a sequence diagram of the config
initialization.

Config::init

Equalizer
Server

Pipe Threads

Application

Client Node
Processes

NodeFactory::
createNode

NodeFactory::
createChannel

NodeFactory::
createWindow

NodeFactory::
createPipe

Node::configInit

Pipe::selectWS
Pipe::configInit

Window::configInit

Channel::configInit

Figure 32: Config Initialization Sequence

The eqPly::Config class holds the master versions of the initialization and frame
data objects. Both are registered with the eq::Config. The configuration forwards
the registration to the local client node and augments the object registration for
buffered objects.

First, it configures the objects to retain its data latency+1 commits, which cor-
responds to the typical use case where objects are committed once per frame. This
allows render clients, which often are behind the application process, to map ob-
jects with an old version. This does not necessarily translate into increased memory
usage, since new versions are only created when the object was dirty during commit.

Second, it retains the data for buffered objects data for latency frames after their
deregistration. This allows to map the object on a render client, even after it has
been deregistered on the application node. This does delay the deallocation of the
buffered object data by latency frames.

The identifier of the initialization data is transmitted to the render client nodes
using the initID parameter of eq::Config::init. The identifier of the frame data is
transmitted using the InitData.

42

7. The Equalizer Parallel Rendering Framework

Equalizer will pass this identifier to all configInit calls of the respective objects:

bool Config : : i n i t ()
{

i f (! animat ion . i s V a l i d ())
animat ion . loadAnimation (i n i t Da ta . getPathFilename ()) ;

// i n i t d i s t r i b u t e d o b j e c t s
i f (! i n i t Da ta . useColor ())

frameData . setColorMode (COLOR WHITE) ;

frameData . setRenderMode (i n i t Da ta . getRenderMode ()) ;
r e g i s t e r O b j e c t (& frameData) ;
frameData . setAutoObsolete (getLatency ()) ;

i n i t Da ta . setFrameDataID (frameData . getID ()) ;
r e g i s t e r O b j e c t (& i n i t Da ta) ;

// i n i t con f i g
i f (! eq : : Conf ig : : i n i t (i n i t Da ta . getID ()))

After a successful initialization, the models are loaded and registered for data
distribution. When idle, Equalizer will predistribute object data during registration
to accelerate the mapping of slave instances. Registering the models after Config::init
ensures that the render clients are running and can cache the data:

loadModels () ;
r e g i s t e r M o d e l s () ;

The exit function of the configuration stops the render clients by calling eq::Con-
fig::exit, and then de-registers the initialization and frame data objects:

bool Config : : e x i t ()
{

const bool r e t = eq : : Conf ig : : e x i t () ;
d e r e g i s t e r D a t a () ;
c loseAdminServer () ;

// re t a in model & d i s t r i b u t o r s f o r p o s s i b l e o ther con f i g runs , d tor d e l e t e s
return r e t ;

}

Frame Control The rendering frames are issued by the application main loop.
The eqPly::Config overrides startFrame to update its data, commit a new version of
the frame data object, and then requests the rendering of a new frame using the
current frame data version. This version is passed to the rendering callbacks and
will be used by the rendering threads to synchronize the frame data to the state
belonging to the current frame. This ensures that all frame-specific data, e.g., the
camera position, is used consistently to generate the frame:

u i n t 3 2 t Conf ig : : startFrame ()
{

updateData () ;
const eq : : u i n t128 t& ve r s i o n = frameData . commit () ;

redraw = fa l se ;
return eq : : Conf ig : : startFrame (v e r s i on) ;

}

The update of the per-frame shared data consist of calculating the camera position
based on the current navigation mode, and determining the idle state for rendering.
When idle, eqPly performs anti-aliasing to gradually reduce aliasing effects in the
rendering. The idle state is tracked by the application and used by the rendering
callbacks to jitter the frusta, accumulate and display the results, as described in
Section 7.2.10:

43

7. The Equalizer Parallel Rendering Framework

void Config : : updateData ()
{

// update camera
i f (animat ion . i s V a l i d ())
{

const eq : : Vector3 f& modelRotation = animat ion . getModelRotation () ;
const CameraAnimation : : Step& curStep = animat ion . getNextStep () ;

frameData . setModelRotat ion (modelRotation) ;
frameData . s e tRotat ion (curStep . r o t a t i o n) ;
frameData . setCameraPosit ion (curStep . p o s i t i o n) ;

}
else
{

i f (frameData . usePilotMode ())
frameData . spinCamera (−0.001 f ∗ spinX , −0.001 f ∗ spinY) ;

else
frameData . spinModel (−0.001 f ∗ spinX , −0.001 f ∗ spinY , 0 . f) ;

frameData . moveCamera (0 .0 f , 0 . 0 f , 0 .001 f ∗ advance) ;
}

// i d l e mode
i f (i s IdleAA ())
{

LBASSERT(numFramesAA > 0) ;
frameData . s e t I d l e (true) ;

}
else

frameData . s e t I d l e (fa l se) ;

numFramesAA = 0 ;
}

Event Handling Events are sent by the render clients to the application using
eq::Config::sendEvent. At the end of the frame, Config::finishFrame calls Config::handle-
Events to perform the event handling. The default implementation processes all
pending events by calling Config::handleEvent for each of them.

Since eqPly uses event-driven execution, the config maintains a dirty state to
know when a redraw is needed.

The eqPly example implements Config::handleEvent to provide the various reac-
tions to user input, most importantly camera updates based on mouse events. The
camera position has to be handled correctly regarding latency, and is therefore saved
in the frame data.

The event handling code reproduced here is just showing the handling of one type
of event. A detailed description on how to customize event handling can be found
in Section 7.2.1:

case eq : : Event : : CHANNEL POINTER WHEEL:
{

frameData . moveCamera (−0.05 f ∗ event−>data . pointerWheel . yAxis ,
0 . f ,
0 .05 f ∗ event−>data . pointerWheel . xAxis) ;

redraw = true ;
return true ;

}

Model Handling Models in eqPly are static, and therefore the render clients only
need to map one instance of the model per node. The mapped models are shared
by all pipe render threads, which access them read-only.

Multiple models can be loaded in eqPly. A configuration has a default model,
stored in InitData, and one model per view, stored and distributed using the View.

44

7. The Equalizer Parallel Rendering Framework

The loaded models are evenly distributed over the available views of the configura-
tion, as shown in Figure 16.

The channel acquires the model during rendering from the config, using the model
identifier from its current view, or from the frame data if no view is configured.

The per-process config instance maintains the mapped models, and lazily maps
new models, which are registered by the application process. Since the model
loading may be called concurrently from different pipe render threads, it is protected
by a mutex:

const Model∗ Config : : getModel (const eq : : u i n t128 t& modelID)
{

i f (modelID == 0)
return 0 ;

// Protec t i f accessed concurren t l y from mu l t i p l e p ipe threads
const eq : : Node∗ node = getNodes () . f r o n t () ;
const bool needModelLock = (node−>getPipes () . s i z e () > 1) ;
lunchbox : : ScopedWrite mutex (needModelLock ? & modelLock : 0) ;

const s i z e t nModels = models . s i z e () ;
LBASSERT(modelDist . s i z e () == nModels) ;

for (s i z e t i = 0 ; i < nModels ; ++i)
{

const ModelDist∗ d i s t = modelDist [i] ;
i f (d i s t−>getID () == modelID)

return models [i] ;
}

modelDist . push back (new ModelDist) ;
Model∗ model = modelDist . back()−> loadModel (getAppl icat ionNode () ,

g e t C l i e n t () , modelID) ;
LBASSERT(model) ;

models . push back (model) ;

return model ;
}

Layout and View Handling For layout and model selection, eqPly maintains an
active view and canvas. The identifier of the active view is stored in the frame data,
which is used by the render client to highlight it using a different background color.
The active view can be selected by clicking into a view, or by cycling through all
views using a keyboard shortcut.

The model of the active view can be changed using a keyboard shortcut. The
model is view-specific, and therefore the model identifier for each view is stored on
the view, which is used to retrieve the model on the render clients.

View-specific data is not limited to a model. Applications can choose to make
any application-specific data view-specific, e.g., cameras, rendering modes or anno-
tations. A view is a generic concept for an application-specific view on data, eqPly
is simply using different models to illustrate the concept:

void Config : : switchCanvas ()
{

const eq : : Canvases& canvases = getCanvases () ;
i f (canvases . empty ())

return ;

frameData . setCurrentViewID (eq : : UUID()) ;

i f (! currentCanvas)
{

currentCanvas = canvases . f r o n t () ;

45

7. The Equalizer Parallel Rendering Framework

return ;
}

eq : : CanvasesCIter i = stde : : f i n d (canvases , currentCanvas) ;
LBASSERT(i != canvases . end ()) ;

++i ;
i f (i == canvases . end ())

currentCanvas = canvases . f r o n t () ;
else

currentCanvas = ∗ i ;
switchView () ; // a c t i v a t e f i r s t view on canvas

}

void Config : : switchView ()
{

const eq : : Canvases& canvases = getCanvases () ;
i f (! currentCanvas && ! canvases . empty ())

currentCanvas = canvases . f r o n t () ;

i f (! currentCanvas)
return ;

const eq : : Layout∗ l ayout = currentCanvas−>getActiveLayout () ;
i f (! l ayout)

return ;

const View∗ view = getCurrentView () ;
const eq : : Views& views = layout−>getViews () ;
LBASSERT(! views . empty ()) ;

i f (! view)
{

frameData . setCurrentViewID (views . f r o n t ()−>getID ()) ;
return ;

}

eq : : ViewsCIter i = std : : f i n d (views . begin () , views . end () , view) ;
i f (i != views . end ())

++i ;
i f (i == views . end ())

frameData . setCurrentViewID (eq : : UUID()) ;
else

frameData . setCurrentViewID ((∗ i)−>getID ()) ;
}

The layout of the canvas with the active view can also be dynamically switched
using a keyboard shortcut. The first canvas using the layout is found, and then the
next layout of the configuration is set on this canvas.

Switching a layout causes the initialization and de-initialization task methods to
be called on the involved channels, and potentially windows, pipes and nodes. This
operation might fail, which may cause the config to stop running.

Layout switching is typically used to change the presentation of views at runtime.
The source code omitted for brevity.

7.1.5. Node

For each active render client, one eq::Node instance is created on the appropriate
machine. Nodes are only instantiated on their render client processes, i.e., each
process will only have one instance of the eq::Node class. The application process
might also have a node class, which is handled in exactly the same way as the render
client nodes. The application and render clients might use a different node factory,
instantiating a different types of eq::Config. . . eq::Channel.

46

7. The Equalizer Parallel Rendering Framework

All dynamic data is multi-buffered in eqPly. During initialization, the eqPly::Node
relaxes the thread synchronization between the node and pipe threads, unless the
configuration file overrides this. Section 7.2.3 provides a detailed explanation of
thread synchronization modes in Equalizer.

During node initialization the static, per-config data is mapped to a local instance
using the identifier passed from Config::init. No pipe, window or channel tasks
methods are executed before Node::configInit has returned:

bool Node : : c o n f i g I n i t (const eq : : u i n t128 t& i n i t I D)
{

// Al l render data i s s t a t i c or mult i−bu f f e red , we can run asynchronous ly
i f (g e t I A t t r i b u t e (IATTR THREAD MODEL) == eq : : UNDEFINED)

s e t I A t t r i b u t e (IATTR THREAD MODEL, eq : :ASYNC) ;

i f (! eq : : Node : : c o n f i g I n i t (i n i t I D))
return fa l se ;

Conf ig ∗ c o n f i g = static cast< Config ∗ >(getConf ig ()) ;
i f (! con f i g−>loadData (i n i t I D))
{

s e tEr ro r (ERROR EQPLY MAPOBJECT FAILED) ;
return fa l se ;

}
return true ;

}

The actual mapping of the static data is done by the config. The config retrieves
the distributed InitData. The object is directly unmapped since it is static, and
therefore all data has been retrieved during :

bool Config : : loadData (const eq : : u i n t128 t& initDataID)
{

i f (! i n i t Da ta . i sAttached ())
{

const u i n t 3 2 t r eque s t = mapObjectNB(& in i tData , initDataID ,
co : : VERSION OLDEST,
getAppl icat ionNode ()) ;

i f (! mapObjectSync (r eque s t))
return fa l se ;

unmapObject (& in i t Da ta) ; // data was r e t r i e v ed , unmap immediate ly
}
else // appNode , in i tDa ta i s r e g i s t e r e d a l ready
{

LBASSERT(i n i t Da ta . getID () == initDataID) ;
}
return true ;

}

7.1.6. Pipe

All task methods for a pipe and its children are executed in a separate thread. This
approach optimizes GPU usage, since all tasks are executed serially and therefore
do not compete for resources or cause OpenGL context switches. Multiple GPU
threads run in parallel with each other.

The pipe uses an eq::SystemPipe, which abstracts and manages window-system-
specific code for the GPU, e.g., an X11 Display connection for the glX pipe system.

Initialization and Exit Pipe threads are not explicitly synchronized with each
other in eqPly due to the use of the async thread model. Pipes might be rendering
different frames at any given time. Therefore frame-specific data has to be allocated
for each pipe thread, which is only the frame data in eqPly. The frame data is a

47

7. The Equalizer Parallel Rendering Framework

member variable of the eqPly::Pipe, and is mapped to the identifier provided by the
initialization data:

bool Pipe : : c o n f i g I n i t (const eq : : u i n t128 t& i n i t I D)
{

i f (! eq : : Pipe : : c o n f i g I n i t (i n i t I D))
return fa l se ;

Conf ig ∗ c o n f i g = static cast<Config∗>(getConf ig ()) ;
const In i tData& in i tData = con f ig−>get In i tData () ;
const eq : : u i n t128 t& frameDataID = in i tData . getFrameDataID () ;

return con f i g−>mapObject (& frameData , frameDataID) ;
}

The initialization in eq::Pipe does the GPU-specific initialization by calling con-
figInitSystemPipe. which is window-system-dependent. On AGL the display ID is
determined, and on glX the display connection is opened.

The config exit function is similar to the config initialization. The frame data is
unmapped and GPU-specific data is de-initialized by eq::Config::exit:

bool Pipe : : c o n f i g E x i t ()
{

eq : : Conf ig ∗ c o n f i g = getConf ig () ;
con f i g−>unmapObject (& frameData) ;

return eq : : Pipe : : c o n f i g E x i t () ;
}

Window System Equalizer supports multiple window system interfaces, at the
moment glX/X11, WGL and AGL/Carbon. Some operating systems, and therefore
some Equalizer versions, support multiple window systems concurrently.

Each pipe might use a different window system for rendering, which is determined
before Pipe::configInit by Pipe::selectWindowSystem. The default implementation of
selectWindowSystem uses the first supported window system.

The eqPly examples allows selecting the window system using a command line
option. Therefore the implementation of selectWindowSystem is overwritten and
returns the specified window system, if supported:

eq : : WindowSystem Pipe : : selectWindowSystem () const
{

const Config ∗ c o n f i g = static cast<const Config∗>(getConf ig ()) ;
return con f i g−>get In i tData () . getWindowSystem () ;

}

Carbon/AGL Thread Safety Parts of the Carbon API used for window and
event handling in the AGL window system are not thread safe. The applica-
tion has to call eq::Global::enterCarbon before any thread-unsafe Carbon call, and
eq::Global::leaveCarbon afterwards. These functions should be used only during win-
dow initialization and exit, not during rendering. For implementation reasons en-
terCarbon might block up to 50 milliseconds. Carbon calls in the window event
handling routine Window::processEvent are thread-safe, since the global carbon lock
is set in this method. Please contact the Equalizer developer mailing list if you need
to use Carbon calls on a per-frame basis.

Frame Control All task methods for a given frame of the pipe, window and
channel entities belonging to the thread are executed in one block, starting with
Pipe::frameStart and finished by Pipe::finishFrame. The frame start callback is there-
fore the natural place to update all frame-specific data to the version belonging to
the frame.

48

7. The Equalizer Parallel Rendering Framework

In eqPly, the version of the only frame-specific object FrameData is passed as the
per-frame id from Config::startFrame to the frame task methods. The pipe uses this
version to update its instance of the frame data to the current version, and unlocks
its child entities by calling startFrame:

void Pipe : : f rameStart (const eq : : u i n t128 t& frameID , const u i n t 3 2 t frameNumber)
{

eq : : Pipe : : f rameStart (frameID , frameNumber) ;
frameData . sync (frameID) ;

}

7.1.7. Window

The Equalizer window abstracts an OpenGL drawable and a rendering context.
When using the default window initialization functions, all windows of a pipe share
the OpenGL context. This allows reuse of OpenGL objects such as display lists and
textures between all windows of one pipe.

The window uses an eq::SystemWindow, which abstracts and manages window-
system-specific handles to the drawable and context, e.g., an X11 window XID and
GLXContext for the glX window system.

The window class is the natural place for the application to maintain all data
specific to the OpenGL context.

Window System Interface The particulars of creating a window and OpenGL
context depend on the window system used. One can either use the implementation
provided by the operating system, e.g., AGL, WGL or glX, or some higher-level
toolkit, e.g., Qt.

OS-Specific Default Implementation

configInitOSWindow
configExitOSWindow
makeCurrent
swapBuffers

Window
configInit
configExit
queryDrawableConfig
makeCurrent
swapBuffers

SystemWindow

getGLXContext
getXDrawable
processEvent

glx::WindowIFgetAGLContext
getCarbonWindow
getAGLPBuffer
processEvent

agl::WindowIF getWGLContext
getWGLDC
getWGLWindowHandle
getWGLPBufferHandle
processEvent

wgl::WindowIF

chooseXVisualInfo
createGLXContext
configInitGLXWindow
configInitGLXPBuffer
setXDrawable
setGLXContext

glx::WindowchooseAGLPixelFormat
createAGLContext
configInitAGLWindow
configInitAGLPBuffer
setAGLContext
setCarbonWindow
setAGLPBuffer

agl::Window
chooseWGLPixelFormat
createWGLContext
configInitWGLWindow
configInitWGLPBuffer
setWGLContext
setWGLWindowHandle
setWGLPBufferHandle

wgl::Window

OS-Specific Interface

OS-Agnostic Implementation

...
QTGLWindow ...

Application-specific

...
CustomWGLWindow

initGLEW
exitGLEW

GLWindow

...
CPURendererWindow

Figure 33: SystemWindow UML Class Hierarchy

All window-system specific
functionality is implemented
by a specialization of eq::Sys-
temWindow. The SystemWin-
dow class defines the min-
imal interface to be imple-
mented for a new window sys-
tem. Each Window uses one
SystemWindow during execu-
tion. This separation allows
an easy implementation and
adaption to another window
system or application.

Equalizer provides a generic
interface and implementation
for the three most com-
mon window systems through
the OpenGL specific eq::GL-
Window class: AGL, WGL
and glX. The interfaces de-
fine the minimal functionality
needed to reuse other window
system specific classes, for ex-
ample the AGL, WGL and
glX event handlers. The sep-
aration of the OpenGL calls
from the SystemWindow permits to implement window systems which don’t use any
OpenGL context and therefore to use a different renderer. The implementation

49

7. The Equalizer Parallel Rendering Framework

derived from these interfaces provides a sample implementation which honors all
configurable window attributes.

Initialization and Exit The initialization sequence uses multiple, override-able task
methods. The main task method configInit calls first configInitSystemWindow, which
creates and initializes the SystemWindow for this window. The SystemWindow ini-
tialization code is implementation specific. If the SystemWindow was initialized
successfully, configInit calls configInitGL, which performs the generic OpenGL state
initialization. The default implementation sets up some typical OpenGL state, e.g.,
it enables the depth test. Most nontrivial applications do override this task method.

The SystemWindow initialization takes into account various attributes set in the
configuration file. Attributes include the size of the various frame buffer planes
(color, alpha, depth, stencil) as well as other framebuffer attributes, such as quad-
buffered stereo, doublebuffering, fullscreen mode and window decorations. Some of
the attributes, such as stereo, doublebuffer and stencil can be set to eq::AUTO, in
which case the Equalizer default implementation will test for their availability and
enable them if possible.

For the window-system specific initialization, eqPly uses the default Equalizer im-
plementation. The eqPly window initialization only overrides the OpenGL-specific
initialization function configInitGL to initialize a state object and an overlay logo.
This function is only called if an OpenGL context was created and made current:

bool Window : : con f ig In i tGL (const eq : : u i n t128 t& i n i t I D)
{

i f (! eq : : Window : : con f ig In i tGL (i n i t I D))
return fa l se ;

g lL ightMode l i (GL LIGHT MODEL LOCAL VIEWER, 1) ;
g lEnable (GL CULL FACE) ; // OPT − produces sparser images in DB mode
g lCul lFace (GL BACK) ;

LBASSERT(! s t a t e) ;
s t a t e = new VertexBuf f e rState (getObjectManager ()) ;

const Config ∗ c o n f i g = static cast< const Config ∗ >(getConf ig ()) ;
const In i tData& in i tData = con f ig−>get In i tData () ;

i f (in i tData . showLogo ())
loadLogo () ;

i f (in i tData . useGLSL ())
loadShaders () ;

return true ;
}

The state object is used to handle the creation of OpenGL objects in a multipipe,
multithreaded execution environment. It uses the object manager of the eq::Window,
which is described in detail in Section 7.1.7.

The logo texture is loaded from the file system and bound to a texture ID used
later by the channel for rendering. A code listing is omitted, since the code consists
of standard OpenGL calls and is not Equalizer-specific.

The window exit happens in the reverse order of the initialization. First, configEx-
itGL is called to de-initialize OpenGL, followed by configExitSystemWindow which
de-initializes the drawable and context and deletes the SystemWindow allocated in
configInitSystemWindow.

The window OpenGL exit function of eqPly de-allocates all OpenGL objects. The
object manager does not delete the object in its destructor, since it does not know
if an OpenGL context is still current.

50

7. The Equalizer Parallel Rendering Framework

bool Window : : conf igExitGL ()
{

i f (s t a t e && ! s t a t e−>i sShared ())
s t a t e−>d e l e t e A l l () ;

delete s t a t e ;
s t a t e = 0 ;

return eq : : Window : : configExitGL () ;
}

Object Manager The object manager is, strictly speaking, not a part of the win-
dow. It is mentioned here since the eqPly window uses an object manager.

The state object in eqPly gathers all rendering state, which includes an object
manager for OpenGL object allocation.

The object manager (OM) is a utility class and can be used to manage OpenGL
objects across shared contexts. Typically one OM is used for each set of shared
contexts of a single GPU.

Each eq::Window has an object manager with the key type const void*, for as
long as it is initialized. Each window can have a shared context window. The
OM is shared with this shared context window. The shared context window is set
by default to the first window of each pipe, and therefore the OM will be shared
between all windows of a pipe. The same key is used by all contexts to get the
OpenGL name of an object, thus reusing of the same object within the same share
group. The method eq::Window::setSharedContextWindow can be used to set up a
different context sharing.

eqPly uses the window’s object manager in the rendering code to obtain the
OpenGL objects for a given data item. The address of the data item to be rendered
is used as the key.

For the currently supported types of OpenGL objects please refer to the API
documentation on the Equalizer website. For each object, the following functions
are available:

supportsObjects() returns true if the usage for this particular type of objects is
supported. For objects available in OpenGL 1.1 or earlier, this function is not
implemented.

getObject(key) returns the object associated with the given key, or FAILED.

newObject(key) allocates a new object for the given key. Returns FAILED if the
object already exists or if the allocation failed.

obtainObject(key) convenience function which gets or obtains the object associ-
ated with the given key. Returns FAILED only if the object allocation failed.

deleteObject(key) deletes the object.

7.1.8. Channel

The channel is the heart of the application’s rendering code, it executes all task
methods needed to update the configured views. It performs the various rendering
operations for the compounds. Each channel has a set of task methods to execute
the clear, draw, readback and assemble stages needed to render a frame.

51

7. The Equalizer Parallel Rendering Framework

Initialization and Exit During channel initialization, the near and far planes are
set to reasonable values to contain the whole model. During rendering, the near
and far planes are adjusted dynamically to the current model position:

bool Channel : : c o n f i g I n i t (const eq : : u i n t128 t& i n i t I D)
{

i f (! eq : : Channel : : c o n f i g I n i t (i n i t I D))
return fa l se ;

setNearFar (0 . 1 f , 10 .0 f) ;
model = 0 ;
modelID = 0 ;
return true ;

}

Rendering The central rendering routine is Channel::frameDraw. This routine con-
tains the application’s OpenGL rendering code, which uses the contextual informa-
tion provided by Equalizer. As most of the other task methods, frameDraw is called
in parallel by Equalizer on all pipe threads in the configuration. Therefore the ren-
dering must not write to shared data, which is the case for all major scene graph
implementations.

In eqPly, the OpenGL context is first set up using various apply convenience
methods from the base Equalizer channel class. Each of the apply methods uses
the corresponding get methods and then calls the appropriate OpenGL functions.
It is also possible to just query the values from Equalizer using the get methods,
and use them to set up the OpenGL state appropriately, for example by passing
the parameters to the renderer used by the application.

For example, the implementation for eq::Channel::applyBuffer does set up the cor-
rect rendering buffer and color mask, which depends on the current eye pass and
possible anaglyphic stereo parameters:

void eq : : Channel : : app lyBuf fe r ()
{

glReadBuf fer (getReadBuffer ()) ;
glDrawBuffer (getDrawBuffer ()) ;

const ColorMask& colorMask = getDrawBufferMask () ;
glColorMask (colorMask . red , colorMask . green , colorMask . blue , true) ;

}

The contextual information has to be used to render the view as expected by
Equalizer. Failure to use certain information will result in incorrect rendering for
some or all configurations. The channel render context consist of:

Buffer The OpenGL read and draw buffer as well as color mask. These parameters
are influenced by the current eye pass, eye separation and anaglyphic stereo
settings.

Viewport The two-dimensional pixel viewport restricting the rendering area within
the channel. For correct operations, both glViewport and glScissor have to be
used. The pixel viewport is influenced by the destination channel’s viewport
definition and compound viewports set for sort-first/2D decompositions.

Frustum The same frustum parameters as defined by glFrustum. Typically the frus-
tum used to set up the OpenGL projection matrix. The frustum is influenced
by the destination channel’s view definition, compound viewports, head ma-
trix and the current eye pass. If the channel has a subpixel parameter, the
frustum will be jittered before it is applied. Please refer to Section 7.2.10 for
more information.

52

7. The Equalizer Parallel Rendering Framework

Head Transformation A transformation matrix positioning the frustum. This is
typically an identity matrix and is used for off-axis frusta in immersive ren-
dering. It is normally used to set up the ‘view’ part of the modelview matrix,
before static light sources are defined.

Range A one-dimensional range with the interval [0..1]. This parameter is optional
and should be used by the application to render only the appropriate subset
of its data for sort-last rendering. It is influenced by the compound range
attribute.

The rendering first checks a number of preconditions, such as if the rendering was
interrupted by a reset and if the idle anti-aliasing is finished. Then the near and
far planes are re-computed, before the rendering context is applied:

void Channel : : frameDraw (const eq : : u i n t128 t& frameID)
{

i f (stopRendering ())
return ;

i n i t J i t t e r () ;
i f (i sDone ())

return ;

Window∗ window = static cast< Window∗ >(getWindow ()) ;
Ver texBuf f e rState& s t a t e = window−>ge tSta t e () ;
const Model∗ oldModel = model ;
const Model∗ model = getModel () ;

i f (oldModel != model)
s t a t e . setFrustumCul l ing (fa l se) ; // crea t e a l l d i s p l a y l i s t s /VBOs

i f (model)
updateNearFar (model−>getBoundingSphere ()) ;

eq : : Channel : : frameDraw (frameID) ; // Setup OpenGL s t a t e

The frameDraw method in eqPly calls the frameDraw method from the parent class,
the Equalizer channel. The default frameDraw method uses the apply convenience
functions to setup the OpenGL state for all render context information, except for
the range which will be used later during rendering:

void eq : : Channel : : frameDraw (const u in t128 t& frameID)
{

app lyBuf fe r () ;
applyViewport () ;

glMatrixMode (GL PROJECTION) ;
g lLoadIdent i ty () ;
applyFrustum () ;

glMatrixMode (GL MODELVIEW) ;
g lLoadIdent i ty () ;
applyHeadTransform () ;

}

After the basic view setup, a directional light is configured, and the model is
positioned using the camera parameters from the frame data. The camera parame-
ters are transported using the frame data to ensure that all channels render a given
frame using the same position.

Three different ways of coloring the object are possible: Using the colors of the
mode, using a unique per-channel color to demonstrate the decomposition as shown
in Figure 34, or using solid white for anaglyphic stereo. The model colors are per-
vertex and are set during rendering, whereas the unique per-channel color is set in
frameDraw for the whole model:

53

7. The Equalizer Parallel Rendering Framework

g l L i g h t f v (GL LIGHT0 , GL POSITION, l i g h t P o s i t i o n) ;
g l L i g h t f v (GL LIGHT0 , GL AMBIENT, l ightAmbient) ;
g l L i g h t f v (GL LIGHT0 , GL DIFFUSE, l i g h t D i f f u s e) ;
g l L i g h t f v (GL LIGHT0 , GL SPECULAR, l i g h t S p e c u l a r) ;

g l M a t e r i a l f v (GL FRONT, GL AMBIENT, materialAmbient) ;
g l M a t e r i a l f v (GL FRONT, GL DIFFUSE, m a t e r i a l D i f f u s e) ;
g l M a t e r i a l f v (GL FRONT, GL SPECULAR, mate r i a lSpecu la r) ;
g l M a t e r i a l i (GL FRONT, GL SHININESS , m a t e r i a l S h i n i n e s s) ;

const FrameData& frameData = getFrameData () ;
glPolygonMode (GL FRONT AND BACK,

frameData . useWireframe () ? GL LINE : GL FILL) ;

const eq : : Vector3 f& p o s i t i o n = frameData . getCameraPosit ion () ;

g lMultMatr ix f (frameData . getCameraRotation () . array) ;
g l T r a n s l a t e f (p o s i t i o n . x () , p o s i t i o n . y () , p o s i t i o n . z ()) ;
g lMultMatr ix f (frameData . getModelRotation () . array) ;

i f (frameData . getColorMode () == COLOR DEMO)
{

const eq : : Vector3ub c o l o r = getUniqueColor () ;
g lColor3ub (c o l o r . r () , c o l o r . g () , c o l o r . b ()) ;

}
else

g l C o l o r 3 f (. 75 f , . 75 f , . 75 f) ;

Finally the model is rendered. If the model was not loaded during node initial-
ization, a quad is drawn in its place:

i f (model)
drawModel (model) ;

else
{

glNormal3f (0 . f , −1. f , 0 . f) ;
g lBeg in (GL TRIANGLE STRIP) ;

g lVe r t ex3 f (. 25 f , 0 . f , . 25 f) ;
g lVe r t ex3 f (−.25 f , 0 . f , . 25 f) ;
g lVe r t ex3 f (. 25 f , 0 . f , −.25 f) ;
g lVe r t ex3 f (−.25 f , 0 . f , −.25 f) ;

glEnd () ;
}

Figure 34: Destination View
of a DB Compound using
Demonstrative Coloring

To draw the model, a helper class for view
frustum culling is set up, using the view frus-
tum from Equalizer (projection and view matrix)
and the camera position (model matrix) from the
frame data. The frustum helper computes the
six frustum planes from the projection and mod-
elView matrices. During rendering, the bound-
ing spheres of the model are tested against these
planes to determine the visibility with the frus-
tum.

Furthermore, the render state from the window
and the database range from the channel is ob-
tained. The render state manages display list or
VBO allocation:

void Channel : : drawModel (const Model∗ scene)
{

Window∗ window = static cast< Window∗ >(getWindow ()) ;
Ver texBuf f e rState& s t a t e = window−>ge tSta t e () ;
const FrameData& frameData = getFrameData () ;

54

7. The Equalizer Parallel Rendering Framework

i f (frameData . getColorMode () == COLOR MODEL && scene−>hasColors ())
s t a t e . s e t Co l o r s (true) ;

else
s t a t e . s e t Co l o r s (fa l se) ;

s t a t e . setChannel (this) ;

// Compute c u l l matrix
const eq : : Matr ix4f& r o t a t i o n = frameData . getCameraRotation () ;
const eq : : Matr ix4f& modelRotation = frameData . getModelRotation () ;
eq : : Matr ix4f p o s i t i o n = eq : : Matr ix4f : : IDENTITY;
p o s i t i o n . s e t t r a n s l a t i o n (frameData . getCameraPosit ion ()) ;

const eq : : Frustumf& frustum = getFrustum () ;
const eq : : Matr ix4f p r o j e c t i o n = useOrtho () ? frustum . compute ortho matr ix () :

frustum . compute matrix () ;
const eq : : Matr ix4f& view = getHeadTransform () ;
const eq : : Matr ix4f model = r o t a t i o n ∗ p o s i t i o n ∗ modelRotation ;

s t a t e . setProject ionModelViewMatr ix (p r o j e c t i o n ∗ view ∗ model) ;
s t a t e . setRange (&getRange () . s t a r t) ;

const eq : : Pipe∗ pipe = getPipe () ;
const GLuint program = s t a t e . getProgram (pipe) ;
i f (program != VertexBuf f e rState : : INVALID)

glUseProgram (program) ;

scene−>cullDraw (s t a t e) ;

setup render state

add root node to
candidates

candidates
empty?

pop candidate

no

fully visible?

no

partially visible?

no

reset render state
yes

yes
render candidate

yes
add children to

candidates

Start

Stop

fully in range?
yes

has children?
yes

no

in range?
yes

no

no

render candidate

Figure 35: Main Render Loop

The model data is spa-
tially organized in a 3-
dimensional kD-tree22 for ef-
ficient view frustum culling.
When the model is loaded by
Node::configInit, it is prepro-
cessed into the kD-tree. Dur-
ing this preprocessing step,
each node of the tree gets a
database range assigned. The
root node has the range [0, 1],
its left child [0, 0.5] and its
right child [0.5, 1], and so on
for all nodes in the tree. The
preprocessed model is saved
in a binary format for accel-
erating subsequent loading.

The rendering loop main-
tains a list of candidates to
render, which initially con-
tains the root node. Each
candidate of this list is tested
for full visibility against the
frustum and range, and ren-
dered if visible. It is dropped
if it is fully invisible or fully out of range. If it is partially visible or partially in
range, the children of the node are added to the candidate list.

Figure 35 shows a flow chart of the rendering algorithm, which performs efficient
view frustum and range culling.

22http://en.wikipedia.org/wiki/Kd-tree

55

http://en.wikipedia.org/wiki/Kd-tree

7. The Equalizer Parallel Rendering Framework

The actual rendering uses display lists or vertex buffer objects. These OpenGL
objects are allocated using the object manager. The rendering is done by the
leaf nodes, which are small enough to store the vertex indices in a short value for
optimal performance with VBOs. The leaf nodes reuse the objects stored in the
object manager, or create and set up new objects if it was not yet set up. Since one
object manager is used per thread (pipe), this allows a thread-safe sharing of the
compiled display lists or VBOs across all windows of a pipe.

The main rendering loop is implemented in VertexBufferRoot::cullDraw(), and not
duplicated here.

Assembly Like most applications, eqPly uses most of the default implementation
of the frameReadback and frameAssemble task methods. To implement an opti-
mization and various customizations, frameReadback is overwritten. eqPly does not
need the alpha channel on the destination view. The output frames are flagged to
ignore alpha, which allows the compressor to drop 25% of the data during image
transfer. Furthermore, compression can be disabled and the compression quality
can be changed at runtime to demonstrate the impact of compression on scalable
rendering:

void Channel : : frameReadback (const eq : : u i n t128 t& frameID)
{

i f (stopRendering () | | i sDone ())
return ;

const FrameData& frameData = getFrameData () ;
const eq : : Frames& frames = getOutputFrames () ;
for (eq : : FramesCIter i = frames . begin () ; i != frames . end () ; ++i)
{

eq : : Frame∗ frame = ∗ i ;
// OPT: Drop alpha channel from a l l frames during network t ranspor t
frame−>setAlphaUsage (fa l se) ;

i f (frameData . i s I d l e ())
frame−>s e tQua l i ty (eq : : Frame : : BUFFER COLOR, 1 . f) ;

else
frame−>s e tQua l i ty (eq : : Frame : : BUFFER COLOR, frameData . getQua l i ty ()) ;

i f (frameData . useCompression ())
frame−>useCompressor (eq : : Frame : : BUFFER COLOR, EQ COMPRESSOR AUTO) ;

else
frame−>useCompressor (eq : : Frame : : BUFFER COLOR, EQ COMPRESSOR NONE) ;

}

eq : : Channel : : frameReadback (frameID) ;
}

The frameAssemble method is overwritten for the use of Subpixel compound with
idle software anti-aliasing, as described in Section 7.2.10.

7.2. Advanced Features

This section discusses important features not covered by the previous eqPly section.
Where possible, code examples from the Equalizer distribution are used to illustrate
usage of the specific feature. Its purpose is to provide information on how to address
a typical problem or use case when developing an Equalizer-based application.

7.2.1. Event Handling

Event handling requires flexibility. On one hand, the implementation differs slightly
for each operating and window system due to conceptual differences in the specific

56

7. The Equalizer Parallel Rendering Framework

implementation. On the other hand, each application and widget set has its own
model on how events are to be handled. Therefore, event handling in Equalizer is
customizable at any stage of the processing, to the extreme of making it possible to
disable all event handling code in Equalizer. In this aspect, Equalizer substantially
differs from GLUT, which imposes an event model and hides most of the event
handling in glutMainLoop.

The default implementation provides a convenient, easily accessible event frame-
work, while allowing all necessary customizations. It gathers all events from all node
processes in the main thread of the application, so that the developer only has to im-
plement Config::processEvent to update its data based on the preprocessed, generic
keyboard and mouse events. It is very easy to use and similar to a GLUT-based
implementation.

Threading Events are received and processed by the pipe thread a window be-
longs to. For AGL, Equalizer internally forwards the events from the main thread,
where it is received, to the appropriate pipe thread. This model allows window
and channel modifications which are naturally thread-safe, since they are executed
from the corresponding render thread and therefore cannot interfere with rendering
operations.

Message Pump To dispatch events, Equalizer ’pumps’ the native events. On
WGL and GLX, this happens on each thread with windows, whereas on AGL it
happens on the main thread and on each pipe thread. By default, Equalizer pumps
these events automatically for the application in-between executing task methods.

The method Pipe::createMessagePump is called by Equalizer during application
and pipe thread initialization before Pipe::configInit to create a message pump for
the given pipe. For AGL, this affects the node thread and pipe threads, since the
node thread message pump needs to dispatch the events to the pipe thread event
queue. Custom message pumps may be implemented, and it is valid to return no
message pump to disable message dispatch for the respective pipe.

If the application disables message pumping in Equalizer, it has to make sure the
events are processed, as it often done by external widget sets such as Qt.

Native Event

OSEventHandler

OSWindowEvent

ConfigEvent

eq::Event

OSWindow::
processEvent

Config::
sendEvent

Pipe Thread Main Thread

Config::
handleEvents

Config::
handleEvent

EventQueue

ConfigEvent

Config::
finishFrame

Native Event

Event

Window::
processEvent

Figure 36: Event Processing

Event Data Flow Events are received by an
event handler. The event handler finds the
eq::SystemWindow for the event. It then creates a
generic Event, which holds the event data in an in-
dependent format. The original native event and
this generic Event form the SystemWindowEvent,
which is passed to the concrete SystemWindow for
processing.

The purpose of the SystemWindow process-
ing method, processEvent, is to perform window-
system specific event processing. For example,
AGLWindow::processEvent calls aglUpdateContext
whenever a resize event is received. For further,
generic processing, the Event is passed on to Win-
dow::processEvent. This Event no longer contains
the native event.

Window::processEvent is responsible for han-
dling the event locally and for translating it into
a generic ConfigEvent. Pointer events are trans-
lated and dispatched to the channel under the

57

7. The Equalizer Parallel Rendering Framework

mouse pointer. The window or channel processEvent method perform local updates
such as setting the pixel viewport before forwarding the event to the application
main loop. If the event was processed, processEvent has to return true. If false is
returned to the event handler, the event will be passed to the previously installed,
window-system-specific event handling function.

After local processing, events are send using Config::sendEvent to the application
node. On reception, they are queued in the application thread. After a frame
has been finished, Config::finishFrame calls Config::handleEvents. The default imple-
mentation of this method provides non-blocking event processing, that is, it calls
Config::handleEvent for each queued event. By overriding handleEvents, event-driven
execution can easily be implemented.

Figure 36 shows the overall data flow of an event.

Default Implementation Equalizer provides an AGLEventHandler, GLXEventHandler
and WGLEventHandler, which handle events for an AGLWindowIF, GLXWindowIF and
WGLWindowIF, respectively. Figure 37 illustrates the class hierarchy for event pro-
cessing.

OS-Agnostic Implementation

processEvent
Window

getGLXContext
getXDrawable
processEvent

glx::WindowIF
getAGLContext
getCarbonWindow
getAGLPBuffer
processEvent

agl::WindowIF
getWGLContext
getWGLDC
getWGLWindowHandle
getWGLPBufferHandle
processEvent

wgl::WindowIF

processEvent
glx::EventHandler

processEvent
agl::EventHandler

1

1
processEvent
wgl::EventHandler

1

1

ResizeEvent resize
PointerEvent pointer
KeyEvent key
Statistic statistic
UserEvent user

Event

XEvent xEvent
glx::WindowEvent

<uses>

<uses>

UINT uMsg
WPARAM wParam
LPARAM lParam

wgl::WindowEvent

<uses>

EventRef carbonEv...
agl::WindowEvent

<uses>

OS-Specific Default Implementation

OS-Specific Interface

1

1

Figure 37: UML Class Diagram for Event Handling

The concrete implementa-
tion of these window inter-
faces is responsible for setting
up and de-initializing event
handling.

Carbon events issued for
AGL windows are initially
received by the node main
thread, and automatically
dispatched to the pipe thread.
The pipe thread will dis-
patch the event to the ap-
propriate event handler. One
AGLEventHandler per window
is used, which is created dur-
ing AGLWindow::configInit. The
event handler installs a Car-
bon event handler for all im-
portant events. The event
handler uses an AGLWin-
dowEvent to pass the Car-
bon EventRef to AGLWin-
dowIF::processEvent. During
window exit, the installed Carbon handler is removed when the window’s event
handler is deleted. No event handling is set up for pbuffers.

For each GLX window, one GLXEventHandler is allocated. FBOs and pbuffers
are handled in the same way as window drawables. The event dispatch finds the
corresponding event handler for each received event, which is then used to process
the event in a fashion similar to AGL. The GLXWindowEvent passes the XEvent to
GLXWindowIF::processEvent.

Each WGLWindow allocates one WGLEventHandler when the window handle is
set. The WGLEventHandler passes the native event parameters uMsg, wParam and
lParam to WGLWindowIF::processEvent as part of the WGLWindowEvent. No event
handling is set up for pbuffers.

58

7. The Equalizer Parallel Rendering Framework

Custom Events in eqPixelBench The eqPixelBench example is a benchmark pro-
gram to measure the pixel transfer rates from and to the framebuffer of all channels
within a configuration. It uses custom config events to send the gathered data to
the application. It is much simpler than the eqPly example since it does not provide
any useful rendering or user interaction.

The rendering routine of eqPixelBench in Channel::frameDraw loops through a
number of pixel formats and types. For each of them, it measures the time to
readback and assemble a full-channel image. The format, type, size and time is
recorded in a config event, which is sent to the application. The new custom event
types are defined as user events:

enum ConfigEventType
{

READBACK = eq : : Event : : USER,
ASSEMBLE,
START LATENCY

} ;

The Config::sendEvent method provides an eq::EventOCommand to which addi-
tional data can be appended. The event output command is derived from the
Collage co::DataOStream which provides a convenient std::ostream-like interface to
send data between nodes. The event is sent when the command looses its scope,
that is, immediately after the following call in eqPixelBench::Channel:

getConf ig ()−>sendEvent (type)
<< msec << name << area << formatType << dataSizeGPU << dataSizeCPU ;

Each event has a type which is used to identify it by the config processing func-
tion. On the application end, Config::handleEvent receives an eq::EventICommand,
which provides deserialization capabilities of the received data. The underlying
co::DataIStream does perform endian conversion if the endianess of the sending and
receiving nodes does not match. The event data is decoded and printed in a nicely
formatted way:

bool Config : : handleEvent (eq : : EventICommand command)
{

switch (command . getEventType ())
{
case READBACK:
case ASSEMBLE:
case START LATENCY:
{

switch (command . getEventType ())
{
case READBACK:

std : : cout << ” readback ” ;
break ;

case ASSEMBLE:
std : : cout << ” assemble ” ;
break ;

case START LATENCY:
default :

s td : : cout << ” ” ;
}

const f loat msec = command . get< f loat >();
const std : : s t r i n g& name = command . get< std : : s t r i n g >();
const eq : : Vector2 i area = command . get< eq : : Vector2 i >();
const std : : s t r i n g& formatType = command . get< std : : s t r i n g >();
const u i n t 6 4 t dataSizeGPU = command . get< u i n t 6 4 t >();
const u i n t 6 4 t dataSizeCPU = command . get< u i n t 6 4 t >();

s td : : cout << ” \”” << name << ”\” ” << formatType
<< std : : s t r i n g (32−formatType . l ength () , ’ ’) << area . x ()
<< ”x” << area . y () << ” : ” ;

59

7. The Equalizer Parallel Rendering Framework

7.2.2. Error Handling

All Equalizer entities use an error code to report error conditions during various
operations. This error code is reported back from the render processes to the
application config instance. The last error is propagated from the failed resource to
the config object, where it can be queried by the application using Config::getError.

Each error emitted by Equalizer code has a textual description. This string is
automatically used for printing an Error on an std::ostream, and can be queried from
the fabric::ErrorRegistry, which is accessible from fabric::Global.

Applications can register additional error codes and strings. The eVolve example
uses this to report if required OpenGL extensions are missing. The registration of
new error codes is not thread-safe, that is, no other thread should use the error
registry when it is modified. It is therefore strongly advised to register application-
specific errors before eq::init and clear them after eq::exit:

int main (const int argc , char∗∗ argv)
{

// 1 . Equa l i z e r i n i t i a l i z a t i o n
NodeFactory nodeFactory ;
eVolve : : i n i t E r r o r s () ;

i f (! eq : : i n i t (argc , argv , &nodeFactory))

...

eq : : e x i t () ;
eVolve : : e x i t E r r o r s () ;
return r e t ;

}

When the application returns false from a configInit task method due to an
application-specific error, it should set an error code using setError. Application-
specific errors can have any value equal or greater than eq::ERROR CUSTOM:

/∗∗ Defines e r ror s produced by eVolve . ∗/
enum Error
{

ERROR EVOLVE ARB SHADER OBJECTS MISSING = eq : :ERROR CUSTOM,
ERROR EVOLVE EXT BLEND FUNC SEPARATE MISSING,
ERROR EVOLVE ARB MULTITEXTURE MISSING,
ERROR EVOLVE LOADSHADERS FAILED,
ERROR EVOLVE LOADMODEL FAILED,
ERROR EVOLVE MAPOBJECT FAILED

} ;

During initialization, eVolve may use these error codes:

bool Window : : con f ig In i tGL (const eq : : u i n t128 t& i n i t I D)
{

Pipe∗ pipe = static cast<Pipe∗>(getPipe ()) ;
Renderer∗ r ende re r = pipe−>getRenderer () ;

i f (! r ende re r)
return fa l se ;

i f (! GLEW ARB shader objects)
{

s e tEr ro r (ERROR EVOLVE ARB SHADER OBJECTS MISSING) ;
return fa l se ;

}

It is not required to register an error string for each application-specific error.
Registering a string will however cause error printing to use this string instead of
using only the numerical error value. Applications may also redefine existing error
strings to their convenience, e.g., for internationalization purposes:

60

7. The Equalizer Parallel Rendering Framework

namespace
{
struct ErrorData
{

const u i n t 3 2 t code ;
const std : : s t r i n g text ;

} ;

ErrorData e r r o r s [] = {
{ ERROR EVOLVE ARB SHADER OBJECTS MISSING,

” GL ARB shader objects ex tens i on miss ing ” } ,
{ ERROR EVOLVE EXT BLEND FUNC SEPARATE MISSING,

” GL ARB shader objects ex tens i on miss ing ” } ,
{ ERROR EVOLVE ARB MULTITEXTURE MISSING,

” GL ARB shader objects ex tens i on miss ing ” } ,
{ ERROR EVOLVE LOADSHADERS FAILED, ”Can ’ t load shaders ” } ,
{ ERROR EVOLVE LOADMODEL FAILED, ”Can ’ t load model” } ,
{ ERROR EVOLVE MAPOBJECT FAILED,

”Mapping data from a p p l i c a t i o n proce s s f a i l e d ” } ,

{ 0 , ”” } // l a s t !
} ;
}

void i n i t E r r o r s ()
{

eq : : f a b r i c : : Er ro rReg i s t ry& r e g i s t r y = eq : : f a b r i c : : Global : : g e tEr ro rReg i s t ry () ;

for (s i z e t i =0; e r r o r s [i] . code != 0 ; ++i)
r e g i s t r y . s e t S t r i n g (e r r o r s [i] . code , e r r o r s [i] . t ex t) ;

}

void e x i t E r r o r s ()
{

eq : : f a b r i c : : Er ro rReg i s t ry& r e g i s t r y = eq : : f a b r i c : : Global : : g e tEr ro rReg i s t ry () ;

for (s i z e t i =0; e r r o r s [i] . code != 0 ; ++i)
r e g i s t r y . e r a s e S t r i n g (e r r o r s [i] . code) ;

}

7.2.3. Thread Synchronization

Equalizer applications use multiple, potentially asynchronous execution threads.
The default execution model is designed on making the porting of existing applica-
tions as easy as possible, as described in Section 5.4. The default, per-node thread
synchronization provided by Equalizer can be relaxed by advanced applications to
gain better performance through higher asynchronicity.

Threads The application or node main thread is the primary thread of each pro-
cess and executes the main function. The application and render clients initialize
the local node for communications with other nodes, including the server, using
Client::initLocal. The client derives from co::LocalNode which does provide most of
the communication logic‘.

During this initialization, Collage creates and manages two threads for communi-
cation, the receiver thread and the command thread. Normally no application code
is executed from these two threads.

The receiver thread manages the network connections to other nodes and receives
data. It dispatches the received data either to the application threads, or to the
command thread.

The command thread processes internal requests from other nodes, for example
during co::Object mapping. In some special cases the command thread executes

61

7. The Equalizer Parallel Rendering Framework

application code, for example when a remote node maps a static or unbuffered
object, Object::getInstanceData is called from the command thread.

The receiver and command thread are terminated when the application stops
network communications using Client::exitLocal.

During config initialization, one pipe thread is created for each pipe. The pipe
threads execute all render task methods for this pipe, and therefore executes the
application’s rendering code. All pipe threads are terminated during Config::exit.
Since a layout switch on a canvas may involve different resources, pipe threads may
be started and stopped dynamically at runtime. Before such an update, Equalizer
will always finish all pending rendering operations to ensure that all resources are
idle.

During compositing, readback and tranmission threads are created lazy on the
first image readback and transmission. Performing readback, compression and
transmission of images asynchronously pipelines these operations with subsequent
rendering commands, which increases overall performance. Equalizer creates one
thread per pipe to finalize an asynchronous readback and one thread per node to
compress and transmit the images to other nodes. Both threads are only visible to
transfer and compression plugins, not to any other application code.

Application
Main Thread

Receiver
Thread

Pipe Render
Threads

Command
Thread

Client::initLocal

Config::init

Config::exit

Client::exitLocal

Node Transmit
Thread

Channel::
transmitImage

Pipe Transfer
Threads

Channel::
finishReadback

Figure 38: Threads within one Node Process

Figure 38 provides an overview on all the threads used by Equalizer and Collage.
The rest of this section discusses the thread synchronization between the main
thread and the pipe threads.

Thread Synchronization Models Equalizer supports three threading models, which
can be set programmatically by the application or through the configuration file
format. Applications typically hard-code their threading model. The file format is
commonly used to change the threading model for benchmarking and experimenta-
tion using test applications.

The following thread synchronization models are implemented:

ASYNC: No synchronization happens between the pipe render threads, except for
synchronizing the finish of frame current-latency. The eqPly and eVolve Equal-
izer examples activate this threading model by setting it in Node::configInit.
This synchronization model provides the best performance and should be used
by all applications which multi-buffer all dynamic, frame-specific data.

DRAW SYNC: Additionally to the synchronization of the async thread model, all
local render threads are synchronized, so that the draw operations happen
synchronously with the node main loop. Compositing, swap barriers and

62

7. The Equalizer Parallel Rendering Framework

buffer swaps happen asynchronously. This model allows to use the same
database for rendering, and safe modifications of this database are possible
from the node thread, since the pipe threads do not execute any rendering
tasks between frames. This is the default threading model. This threading
model should be used by applications which keep one copy of the scene graph
per node.

LOCAL SYNC: Additionally to the synchronization of the async thread model,
all local frame operations, including readback, assemble and swap buffer are
synchronized with the node main loop. This threading model should be used
by applications which need to access non-buffered, frame-specific data after
rendering, e.g., during Channel::frameAssemble.

Figure 39 illustrates the synchronization and task execution for the thread syn-
chronization models. Please note that the thread synchronization synchronizes all
pipe render threads on a single node with the node’s main thread. The per-node
frame synchronization does not break the asynchronous execution across nodes.

draw

assemble

readback

draw

draw

draw

assemble

readback

draw

assemble

readback

draw

draw

draw

assemble

readback

draw

assemble

readback

draw

drawdraw

assemble

readback

node unlocked
startFrame: 2

node unlocked
startFrame: 3

startFrame: 1
async local_syncdraw_sync

Figure 39: Async, draw sync and local sync Thread Synchronization Models

An implication of the draw sync and local sync models is that the application
node cannot issue a new frame until it has completed all its draw tasks. For larger
cluster configurations it is therefore advisable to assign only assemble operations
to the application node, allowing it to run asynchronous to the rendering nodes. If
the machine running the application process should also contribute to rendering, a
second node on the same host can be used to perform off-screen draw and readback
operations for the application node process.

DPlex Compounds DPlex decomposition requires multiple frames to be rendered
concurrently. Applications using the thread synchronization models draw sync (the
default) or local sync have to use one render client process per GPU to benefit from
DPlex task decomposition.

Non-threaded pipes should not be used for DPlex source and destination channels.
Applications using the local sync thread model cannot benefit from DPlex if the
application node uses a DPlex source or destination channel.

Applications using the async thread synchronization model can fully profit from
DPlex using multiple render threads on a multi-GPU system. For these applications,

63

7. The Equalizer Parallel Rendering Framework

all render threads run asynchronously and can render different frames at the same
time.

Synchronizing the draw operations between multiple pipe render threads, and
potentially the application thread, breaks DPlex decomposition. At any given time,
only one frame can be rendered from the same process. The speedup of DPlex relies
however on the capability to render different frames concurrently.

If one process per GPU is configured, draw-synchronous applications can scale
the performance using DPlex compounds. The processes are not synchronized with
each other, since each process keeps its own version of the scene data.

Thread Synchronization in Detail The application has extended control over the
task synchronization during a frame. Upon Config::startFrame, Equalizer invokes the
frameStart task methods of the various entities. The entities unlock all their children
by calling startFrame, e.g., Node::frameStart has to call Node::startFrame to unlock
the pipe threads. Note that certain startFrame calls, e.g., Window::startFrame, are
currently empty since the synchronization is implicit due to the sequential execution
within the thread.

main thread pipe threads

Node::frameStart
Node::startFrame Pipe::frameStart

Node::frameFinish
Node::releaseFrame

Pipe::frameFinish
Pipe::releaseFrame

Node::waitFrameStarted

Node::frameDrawFinish
Pipe(s)::waitFrameLocal

Pipe::frameDrawFinish
Pipe::releaseFrameLocal

draw tasks

compostion tasks

Figure 40: Per-Node Frame Synchronization

Figure 40 illustrates the
local frame synchronization.
Each entity uses waitFrame-
Started to block on the par-
ent’s startFrame, e.g., Pipe::-
frameStart calls Node::wait-
FrameStarted to wait for the
corresponding Node::startFra-
me. This explicit synchro-
nization allows to update
non-critical data before syn-
chronizing with waitFrameS-
tarted, or after unlocking us-
ing startFrame. Figure 40 il-
lustrates this synchronization
model.

At the end of the frame,
two similar sets of synchro-
nization methods are used.
The first set synchronizes the local execution, while the second set synchronizes
the global execution.

The local synchronization consists of releaseFrameLocal to unlock the local frame,
and of waitFrameLocal to wait for the unlock. For the default synchronization model
sync draw, Equalizer uses the task method frameDrawFinish which is called on each
resource after the last Channel::frameDraw invocation for this frame. Consequently,
Pipe::frameDrawFinish calls Pipe::releaseFrameLocal to signal that it is done drawing
the current frame, and Node::frameDrawFinish calls Pipe::waitFrameLocal for each of
its pipes to block the node thread until the current frame has been drawn.

The second, global synchronization is used for the frame completion during Con-
fig::finishFrame, which causes frameFinish to be called on all entities, passing the
oldest frame number, i.e., frame current-latency. The frameFinish task methods
have to call releaseFrame to signal that the entity is done with the frame. The re-
lease causes the parent’s frameFinish to be invoked, which is synchronized internally.
Once all Node::releaseFrame have been called, Config::finishFrame returns.

Figure 41 outlines the synchronization for the application, node and pipe classes
for an application node and one render client when using the default draw sync

64

7. The Equalizer Parallel Rendering Framework

Pipe(s)Application Node

Config::startFrame

Pipe(s)

Node::frameStart

Server

Config::finishFrame

Render ClientApplication

Node::startFrame
Node::frameStart

Node::startFrame Pipe::frameStart
Config::beginFrame

Pipe::frameStart

Pipe::startFrame

Node::frameFinish
Node::releaseFrame

Pipe::frameFinish
Pipe::releaseFrame

Node::waitFrameStarted

non-threaded
draw tasks

Node::frameDrawFinish
Pipe(s)::waitFrameLocal

draw tasks

Pipe::frameDrawFinish
Pipe::releaseFrameLocal

non-threaded
assemble tasks

assemble tasks

Pipe::startFrame
Node::waitFrameStarted

Pipe::frameFinish
Pipe::releaseFrame

draw tasks

Pipe::frameDrawFinish
Pipe::releaseFrameLocal

assemble tasks

Node::frameFinish
Node::releaseFrame

non-threaded
frame draw tasks

Node::frameDrawFinish
Pipe(s)::waitFrameLocal

non-threaded
assemble tasks

Figure 41: Synchronization of Frame Tasks

thread model. Please note that Config::finishFrame does block until the current
frame has been released locally and until the frame current - latency has been released
by all nodes. The window and channel synchronization are similar and omitted for
simplicity.

It is absolutely vital for the execution that Node::startFrame and Node::releaseFra-
me are called, respectively. The default implementations of the node task methods
do take care of that.

7.2.4. OpenGL Extension Handling

Equalizer uses GLEW23 for OpenGL extension handling, particularly the GLEW MX
implementation providing multi-context support. The build system favors an ex-
isting GLEW MX installation, but will fall back to a builtin implementation. Ap-
plications should use eq/client/gl.h to include the proper GLEW headers. If the
preprocessor define EQ IGNORE GLEW is set, no GLEW headers will be included
into application code by any Equalizer header file.

GLEW uses a function table called GLEWContext to store function pointers for
non-standard OpenGL functions. This table is initialized once per OpenGL context
by retrieving the pointers through a system-specific method. OpenGL functions are
then redefined using a macro which retrieves the GLEWContext using glewGetCon-
text, looking up the corresponding function pointer in this table and calling the
function.

Each eq::GLWindow, which is the SystemWindow base class for all OpenGL system
windows, has a GLEWContext. This context can be obtained by using glewGetCon-
text on the eq::Window or eq::Channel. Equalizer (re-)initializes the GLEW context
whenever a new OpenGL context is set.

Extended OpenGL functions called from a GLWindow, window or channel in-
stance can be called directly. GLEW will call the object’s glewGetContext to obtain
the correct context:

void eqPly : : Channel : : drawModel (const Model∗ model)
{

. . .
glUseProgram (program) ;
. . .

}

23http://glew.sourceforge.net

65

http://glew.sourceforge.net

7. The Equalizer Parallel Rendering Framework

Functions called from another place need to define a macro or function glewGet-
Context that returns the pointer to the GLEWContext of the appropriate window,
e.g., as done by the eqPly kd-tree rendering classes:

// s t a t e has GLEWContext∗ from window
#define glewGetContext s t a t e . glewGetContext

/∗ Set up render ing o f the l e a f nodes . ∗/
void VertexBuf fe rLea f : : setupRendering (VertexBuf f e rState& state ,

GLuint∗ data) const
{

. . .
g lB indBuf f e r (GL ARRAY BUFFER, data [VERTEX OBJECT]) ;
g lBuf fe rData (GL ARRAY BUFFER, vertexLength ∗ s izeof (Normal) ,

& g loba lData . normals [v e r t e x S t a r t] , GL STATIC DRAW) ;
. . .

}

The WGL and GLX pipe manage a WGLEWContext and GLXEWContext, re-
spectively. These context are useful if extended wgl or glX functions are used
during window initialization. The GLEW context structures are initialized using a
temporary OpenGL context, created using the proper display device of the pipe.

7.2.5. Window System Integration

Communicating with GPUs, creating windows and handling events is operating sys-
tem dependent in OpenGL. Equalizer abstracts the specifities behind the eq::Win-
dowSystemIF interface and provides an implemenation for glX/X11, AGL/Carbon
and WGL. This interface class defines a factory to instantiate SystemPipe, Sys-
temWindow and MessagePump. Its constructor registers the available instances
used at runtime, that is, the class should be instantiated exactly once per process
by the implementation.

The SystemPipe abstracts GPU-specific handling, most notably the implementa-
tion does query the display resolution and sets it on its eq::Pipe during initialization.
It also contains a GLXEWContext and WGLEWContext dispatch table for the glX
and WGL window system, respectively.

The SystemWindow interface externalizes the details of the windowing API from
the eq::Window implementation and facilitates the integration with new windowing
APIs and custom applications. The system window implements the core function-
ality for Equalizer to interface with the underlying window system and is described
in detail below.

The MessagePump ensures that OS events are processed and is called by Equalizer
from the main and render threads regularly. Typically it only needs to be customized
when integrating a totally new window system.

Equalizer provides sample implementations for the supported window systems in
the agl, glx and wgl subfolders. These sample implementations are intended to be
sub-classed and various steps in the window initialization can be overwritten and
customized.

An application typically chooses to subclass the sample implementation if only
minor tweaks are needed for integration. For major changes or new window sys-
tems, it is often easier to subclass directly from SystemWindow or GLWindow and
implement the abstract methods of this interface class.

The method Window::configInitSystemWindow is used to instantiate and initialize
the SystemWindow implementation during config initialization. After a successful
SystemWindow initialization, Window::configInitGL is called for the generic OpenGL
state setup.

Since window initialization is notoriously error-prone and hard to debug in an
distributed application, the sample implementation propagates the reason for errors

66

7. The Equalizer Parallel Rendering Framework

from the render clients back to the application. The Pipe and Window classes have
a setError method, which is used to set an error code. This string is passed to the
Config instance on the application node, where it can be retrieved using getError.
The Section 7.2.2 explains error handling in more detail.

The sample implementations agl::Window, glx::Window and wgl::Window all have
similar, override-able methods for all sub-tasks. This allows partial customization,
without the need of rewriting tedious window initialization code, e.g., the OpenGL
pixel format selection. Figure 33 shows the UML class hierarchy for the system
window implementations.

Drawable Configuration OpenGL drawables have a multitude of buffer modes. A
drawable might be single-buffered, double-buffered or quad-buffered, have auxiliary
image planes such as stencil, accumulation and depth buffer or multisampling.

The OpenGL drawable is configured using window attributes. These attributes
are used by the method choosing the pixel format (or visual in X11 speak) to select
the correct drawable configuration.

Window attributes can either be configured through the configuration file (see
Appendix B), or programmatically. In the configuration file, modes are selected
which are not application-specific, for example stereo formats for active stereo dis-
plays.

Applications which require certain drawable attributes can set the corresponding
window attribute hint during window initialization. The Equalizer volume rendering
example, eVolve, is such an example. It does need alpha planes for rendering and
compositing. The window initialization of eVolve sets the attribute before calling
the default initialization method of Equalizer:

bool Window : : c o n f i g I n i t (const eq : : u i n t128 t& i n i t I D)
{

// Enforce a lpha channel , s ince we need one fo r render ing
s e t I A t t r i b u t e (IATTR PLANES ALPHA, 8) ;

return eq : : Window : : c o n f i g I n i t (i n i t I D) ;
}

AGL Window Initialization AGL initialization happens in three steps: choosing a
pixel format, creating the context and creating a drawable.

Most AGL and Carbon calls are not thread-safe. The Equalizer methods calling
these functions use Global::enterCarbon and Global::leaveCarbon to protect the API
calls. Please refer to Section 7.1.6 for more details.

The pixel format is chosen based on the window’s attributes. Some attributes set
to auto, e.g., stereo, cause the method first to request the feature and then to back off
and retry if it is not available. The pixel format returned by chooseAGLPixelFormat
has to be destroyed using destroyAGLPixelFormat. When no matching pixel format is
found, chooseAGLPixelFormat returns 0 and the AGL window initialization returns
with a failure.

The context creation also uses the global Carbon lock. Furthermore, it sets
up the swap buffer synchronization with the vertical retrace, if enabled by the
corresponding window attribute hint. Again the window initialization fails if the
context could not be created.

The drawable creation method configInitAGLDrawable calls either configInitAGL-
Fullscreen, configInitAGLWindow or configInitAGLPBuffer

The top-level AGL window initialization code therefore looks as follows:

bool Window : : c o n f i g I n i t ()
{

AGLPixelFormat pixelFormat = chooseAGLPixelFormat () ;

67

7. The Equalizer Parallel Rendering Framework

i f (! pixelFormat)
return fa l se ;

AGLContext context = createAGLContext (pixelFormat) ;
destroyAGLPixelFormat (pixelFormat) ;
setAGLContext (context) ;

i f (! context)
return fa l se ;

makeCurrent () ;
initGLEW () ;
return configInitAGLDrawable () ;

}

GLX Window Initialization GLX initialization is very similar to AGL initializa-
tion. Again the steps are: choose frame buffer configuration (pixel format), create
OpenGL context and then create drawable. The only difference is that the data
returned by chooseGLXFBConfig has to be freed using XFree:

bool Window : : c o n f i g I n i t ()
{

GLXFBConfig∗ fbConf ig = chooseGLXFBConfig () ;
i f (! fbConf ig)
{

s e tEr ro r (ERROR SYSTEMWINDOW PIXELFORMAT NOTFOUND) ;
return fa l se ;

}

GLXContext context = createGLXContext (fbConf ig) ;
setGLXContext (context) ;
i f (! context)
{

XFree (fbConf ig) ;
return fa l se ;

}

const bool s u c c e s s = configInitGLXDrawable (fbConf ig) ;
XFree (fbConf ig) ;

i f (! s u c c e s s | | ! xDrawable)
{

i f (getError () == ERROR NONE)
se tEr ro r (ERROR GLXWINDOW NO DRAWABLE) ;

return fa l se ;
}

makeCurrent () ;
initGLEW () ;

initSwapSync () ;
i f (g e t I A t t r i b u t e (eq : : Window : : IATTR HINT DRAWABLE) == FBO)

conf igInitFBO () ;

return s u c c e s s ;
}

WGL Window Initialization The WGL initialization requires another order of
operations compared to AGL or GLX. The following functions are used to initialize
a WGL window:

1. initWGLAffinityDC is used to set up an affinity device context, which might be
needed for window creation. The WGL window tracks potentially two device
context handles, one for OpenGL context creation (the affinity DC), and one
for swapBuffers (the window’s DC).

68

7. The Equalizer Parallel Rendering Framework

2. chooseWGLPixelFormat chooses a pixel format based on the window attributes.
If no device context is given, it uses the system device context. The chosen
pixel format is set on the passed device context.

3. configInitWGLDrawable creates the drawable. The device context passed to
configInitWGLDrawable is used to query the pixel format and is used as the
device context for creating a pbuffer. If no device context is given, the display
device context is used. On success, it sets the window handle. Setting a
window handle also sets the window’s device context.

4. createWGLContext creates an OpenGL rendering context using the given de-
vice context. If no device context is given, the window’s device context is
used. This function does not set the window’s OpenGL context.

The full configInitWGL task method, including error handling and cleanup, looks
as follows:

bool Window : : c o n f i g I n i t ()
{

i f (! initWGLAffinityDC ())
{

s e tEr ro r (ERROR WGL CREATEAFFINITYDC FAILED) ;
return fa l se ;

}

const int pixelFormat = chooseWGLPixelFormat () ;
i f (pixelFormat == 0)
{

exitWGLAffinityDC () ;
return fa l se ;

}

i f (! configInitWGLDrawable (pixelFormat))
{

exitWGLAffinityDC () ;
return fa l se ;

}

i f (! wglDC)
{

exitWGLAffinityDC () ;
setWGLDC(0 , WGL DC NONE) ;
s e tEr ro r (ERRORWGLWINDOWNODRAWABLE) ;
return fa l se ;

}

HGLRC context = createWGLContext () ;
i f (! context)
{

c o n f i g E x i t () ;
return fa l se ;

}

setWGLContext (context) ;
makeCurrent () ;
initGLEW () ;

initSwapSync () ;
i f (g e t I A t t r i b u t e (eq : : Window : : IATTR HINT DRAWABLE) == FBO)

return conf igInitFBO () ;

return true ;
}

69

7. The Equalizer Parallel Rendering Framework

7.2.6. Stereo and Immersive Rendering

Equalizer fully supports immersive rendering for Virtual Reality by implementing
multiple tracked observers, head-mounted displays (HMD), flexible focus distance
and asymmetric eye positions. Equalizer optionally supports tracking devices using
the VRPN or OpenCV libraries.

An Equalizer configuration contains a number of observers. Each observer rep-
resents one tracked entity. Most immersive configurations have one observer, but
it is possible to support multiple tracked viewers in the same configuration, e.g., to
use two HMDs.

Each observer has its own head matrix, eye positions and focus information for
tracking. Typically each observer receives tracking data from a different device.
The observer may set the name of a VRPN tracking device or the index of the
OpenCV camera to be used to track this observer. The VRPN tracker is expected
to deliver tracking data in the correct coordinate system, that is, using meter units
with the same origin as the frustum descriptions in the Equalizer configuration
file. The OpenCV tracker is limited to 2.5D tracking due to the limited amount of
information gained by face detection.

Stereo Rendering Figure 42(a) illustrates a monoscopic view frustum. The viewer
is positioned at the origin of the global coordinate system, and the frustum is com-
pletely symmetric. This is the typical view frustum for non-stereoscopic applica-
tions.

x

z

wall from
config file

near plane

far plane

(a)

x

z

(b)

Figure 42: Monoscopic(a) and Stereoscopic(b) Frusta

In stereo rendering, the scene is rendered twice, with the two frustum origins
’moved’ to the position of the left and right eye, as shown in Figure 42(b). The
stereo frusta are asymmetric. The stereo convergence plane is the same as the
projection surface, unless specified otherwise using the focus distance API (see
Section 7.2.6).

Note that while stereo rendering is often implemented using the simpler toe-in
method, Equalizer implements the correct approach using asymmetric frusta.

Immersive Rendering In immersive visualization, the observer is tracked in and
the view frusta are adapted to the viewer’s position and orientation, as shown in
Figure 43(a). The transformation origin → viewer is set by the integrated tracking
code or by the application using Observer::setHeadMatrix, which is used by the server
to compute the absolute eye positions, and consequently the view frusta.

Tracking events are often delivered asynchronously by an external source. The
recommended way is to emit an OBSERVER MOTION event, which has to contain

70

7. The Equalizer Parallel Rendering Framework

x

z

(a)

x

z

(b)

Figure 43: Tracked(a) and HMD(b) Immersive Frusta

the observer identifier and a Matrix4f head matrix. Equalizer optionally implements
head tracking using VRPN or OpenCV, and uses this mechanism to inject the
asynchronously computed tracking matrix:

con f i g−>sendEvent (Event : :OBSERVER MOTION) << o r i g i n a t o r << head ;

This event will be dispatched to the given observer instance in the application
process during the next Config::handleEvents. The observer will update its head
matrix based on the event data:

switch (command . getEventType ())
{
case Event : :OBSERVER MOTION:

return setHeadMatrix (command . get< Matrix4f >()) ;
}

Projection surfaces which are not X/Y-planar create frusta which are not oriented
along the Z axis, as shown in Figure 44(a). These frusta are positioned using the
channel’s head transformation, which can be retrieved using Channel::getHeadTransform.

For head-mounted displays (HMD), the tracking information is used to move the
frusta with the observer, as shown in Figure 43(b). This results in different pro-
jections compared to normal tracking with fixed projection screens. This difference
is transparent to Equalizer applications, only the configuration file uses a different
wall type for HMDs.

Focus Distance The focus distance, also called stereo convergence, is the Z dis-
tance in which the left and right eye frusta converge. A plane parallel to the near
plane positioned in the focus distance creates the same 2D image for both eyes.

The frustum calculation up to Equalizer version 1.0 places the stereo convergence
on the projection surface, as shown in Figure 44(a). The focus distance is therefore
the distance between the origin and the middle of the projection surface. This is
how almost all Virtual Reality software handles the focal plane.

In Equalizer 1.2 and later the focus distance and mode can be configured and
changed at runtime for each observer. This allows applications to expose the focal
plane in their user interface, or to automatically calculate it based on the scene and
view direction.

The default focus mode fixed implements the algorithm used by Equalizer 1.0.
This mode ignores the focus distance setting. The focus modes relative to origin
and relative to observer use the focus distance parameter to dynamically change the
stereo convergence.

The focus distance calculation relative to the origin allows to change the focus
independent of the observer position by separating the projection surface from the

71

7. The Equalizer Parallel Rendering Framework

x

z

f

(a)

x

z

f

(b)

x

z f

(c)

Figure 44: Fixed(a) and dynamic focus distance relative to origin(b) and observer(c)

stereo convergence plane. The convergence plane of the first wall in the negative
Z direction is moved to be at the given focus distance, as shown in Figure 44(b).
All other walls are moved by the same relative amount. The movement is made
from the view of the central eye, thus leaving the mono frustum unchanged. Fig-
ure 44(b) shows the new logical ’walls’ used for frustum calculations in white, while
the physical projection from Figure 44(a) is still visible.

The focus distance calculation relative to the observer is similar to the origin
algorithm, but it keeps the closest wall in the observer’s view direction at the given
focus distance, as shown in Figure 44(c). When the observer moves forward, the
focal plane moves forward as well. Consequently, when the observer looks in a
different direction, a different object in the scene is focused, as indicated by the
dotted circle in Figure 44(c).

x

z

1m

1m

0.5m

1.6m

(a)

x

z

2m

(b)

x

z

2m

(c)

Figure 45: Fixed(a), relative to origin(b) and observer(c) focus distance examples

Figure 45 shows an example for the three focus distance modes. The configured
wall is one meter behind the origin, the model two meters behind and the observer
is half a meter in front of the origin. The focus distance was set to two meters.

72

7. The Equalizer Parallel Rendering Framework

Application-specific Scaling All Equalizer units in the configuration file and API
are configured in meters. This convention allows the reuse of configurations across
multiple applications. When visualizing real-world objects, e.g., for architectural
visualizations, it guarantees that they appear realistic and full immersion into the
visualization can be achieved.

Certain applications want to visualize objects in immersive environments in a
scale different from their natural size, e.g., astronomical simulations. Each model,
and therefore each view, might have a different scale. Applications can declare this
scale as part of the eq::View, which will be applied to the virtual environment by
Equalizer. Common metric scale factors are provided as constants.

7.2.7. Layout API

The Layout API provides an abstraction for render surfaces (Canvas and Segment)
and the arrangement of rendering areas on them (Layout and View). Its function-
ality has been described in Section 3.8 and Section 3.9. This section focuses on how
to use the Layout API programmatically.

The application has read access to all canvases, segment, layouts and views of the
configuration. The render client has access to the current view in the channel task
methods. The layout entities can be sub-classed using the NodeFactory. Currently
the layout of a canvas, the frustum and stereo mode of a view as well as the view’s
user data object can be changed at runtime.

Subclassing and Data Distribution Layout API entities (Canvas, Segment, Lay-
out, View) are sub-classed like all other Equalizer entities using the NodeFactory.
Equalizer registers the master instance of these entities on the server node. Mutable
parameters, e.g., the active layout of a canvas, are distributed using slave object
commits (cf. Section 8.4.4). Application-specific data can be attached to a view
using a distributable UserData object. Figure 46 shows the UML class hierarchy for
the eqPly::View.

_modelID
_idleSteps

eqPly::View
handleEvent

eq::View

setUserData
hasMasterUserData
getName
setName
serialize
deserialize

_userData
_name
DIRTY_USERDATA
DIRTY_NAME

eq::fabric::Object

...dirty bits...
co::Serializable

...data distribution...
co::Object

1

serialize
deserialize

DIRTY_MODEL
DIRTY_IDLE

eqPly::View::Proxy

getWall
setWall
getProjection
setProjection

_wall
_projection

eq::fabric::Frustum

1

hasMasterUserData
getViewport
serialize
deserialize

_viewport
DIRTY_VIEWPORT
DIRTY_FRUSTUM

eq::fabric::View

<is _userData>

Figure 46: UML Hierarchy of eqPly::View

Equalizer commits dirty lay-
out entities at the beginning
of each Config::startFrame, and
synchronizes the slave in-
stances on the render clients
correctly with the current
frame.

The render clients can ac-
cess a slave instance of the
view using Channel::getView.
When called from one of
the frame task methods, this
method will return the view of
the current destination chan-
nel for which the task method
is executed. Otherwise it
returns the channel’s native
view, if it has one. Only des-
tination channels of an active canvas have a native view.

The most common entity to subclass is the View, since the application often
amends it with view-specific application data. A view might have a distributable
user data object, which has to inherit from co::Object to be committed and syn-
chronized with the associated view.

73

7. The Equalizer Parallel Rendering Framework

Externalizing the data distribution in a UserData object is necessary since the
server holds the master instance of a view. The server contains no application code,
and would not be able to (de-)serialize the application data of a view. Instead, the
user data object has its master and slave instances only in application processes,
and the server only handles the identifier and version of this object.

In eqPly, the application-specific data is the model identifier and the number
of anti-aliasing steps to be rendered when idle. This data is distributed by a
View::Proxy object which serves as the view’s user data. The proxy defines the
necessary dirty bits and serializes the data:

/∗∗ The changed par t s o f the view . ∗/
enum Dir tyBi t s
{

DIRTY MODEL = co : : S e r i a l i z a b l e : : DIRTY CUSTOM << 0 ,
DIRTY IDLE = co : : S e r i a l i z a b l e : : DIRTY CUSTOM << 1

} ;

i f (d i r t y B i t s & DIRTY MODEL)
os << view−> modelID ;

i f (d i r t y B i t s & DIRTY IDLE)
os << view−> i d l e S t e p s ;

}

void View : : Proxy : : d e s e r i a l i z e (co : : DataIStream& is , const u i n t 6 4 t d i r t y B i t s)
{

i f (d i r t y B i t s & DIRTY MODEL)
i s >> view−> modelID ;

i f (d i r t y B i t s & DIRTY IDLE)
{

i s >> view−> i d l e S t e p s ;
i f (i sMaster ())

s e tD i r ty (DIRTY IDLE) ; // r e d i s t r i b u t e s l a v e s e t t i n g s
}

}

void View : : setModelID (const lunchbox : : u in t128 t& id)

The eqPly::View sets its Proxy as the user data object in the constructor. By
default, the master instance of the view’s user data is on the application instance of
the view. This may be changed by overriding hasMasterUserData. The proxy object
registration, mapping and synchronization is fully handled be the fabric layer, no
further handling has to be done by the application:

View : : View (eq : : Layout∗ parent)
: eq : : View (parent)
, proxy (this)
, i d l e S t e p s (0)

{
setUserData (& proxy) ;

}

void View : : setModelID (const lunchbox : : u in t128 t& id)
{

i f (modelID == id)
return ;

modelID = id ;
proxy . s e tD i r ty (Proxy : : DIRTY MODEL) ;

}

Run-time Layout Switch The application can use a different layout on a canvas.
This will cause the running entities to be updated on the next frame. At a minimum,
this means the channels involved in the last layout on the canvas are de-initialized,

74

7. The Equalizer Parallel Rendering Framework

that is configExit and NodeFactory::releaseChannel is called, and channels involved in
the new layout are initialized. If a layout does not cover fully a canvas, the layout
switch can also cause the (de-)initialization of windows, pipes and nodes.

Due to the entity (de-)-initialization and the potential need to initialize view-
specific data, e.g., a model, a layout switch is relatively expensive and will stall
eqPly for about a second.

Initializing an entity can fail. If a failure occurs and runtime reliability is not
active, the server will exit the whole configuration, and send an EXIT event to the
application node. The exit event will cause the application to exit, since it resets
the config’s running state.

Run-time Stereo Switch Similar to switch a layout, the stereo mode of each view
can be switched at runtime. This causes all destination channels of the view to
update the cyclop eye or the left and right eye.

The configuration contains stereo information in three places: the view, the seg-
ment and the compound. The view defines which stereo mode is active: mono or
stereo. This setting can be done in the configuration file or programmatically.

The segment has an eye attribute in which defines which eyes are displayed by
this segment. This is typically all eyes for active stereo projections and the left
or right eye for passive stereo. The cyclop eye for passive stereo can either be set
on a single segment or both, depending if the second projector is active during
monoscopic rendering. The default setting enables all eyes for a segment.

GPU 0
left eye

GPU 1
right eye

Stereo Mode Mono Mode

GPU 0
left half

GPU 1
right half

Figure 47: Using two different decompositions dur-
ing stereo and mono rendering

The compound has an eye
attribute defining which eyes
it is capable of updating.
This allows to specify differ-
ent compounds for the same
channel, depending on the
stereo mode. One use case
is to use one GPU each for
updating a stereo destination
channel in stereo mode, and
using a 2D compound with
the two GPUs in mono mode.
Figure 47 illustrates this ex-
ample. The coloring in mono
mode is to illustrate the 2D decomposition. The default setting for the compound
eye attributes is all eyes.

Frustum Updates Frustum parameters can be changed at runtime for views and
segments by the application. View frusta are typically changed for non-fullscreen
application windows and multi-view layouts, where the rendering is not meant to
be viewed in real-world size in an immersive environment. A typical use case is
changing the field-of-view of the rendering.

Segment frusta are changed when the display system changes at runtime, for
example by moving a tracked LCD through a virtual world.

The view and segment are derived from eq::Frustum (Figure 46), and the applica-
tion process can set the wall or projection parameters at runtime. For a description
of wall and projection parameters please refer to Section 3.11.3. The new data will
be effective for the next frame. The frustum of a view overrides the underlying
frustum of the segments.

75

7. The Equalizer Parallel Rendering Framework

The default Equalizer event handling is using the view API to maintain the aspect
ratio of destination channels after a window resize. Without updating the wall or
projection description, the rendering would become distorted.

Equalizer
ServerApplicationRender Client

Window::processEvent

wi
nd

ow
re

siz
ed

Win::setPixelViewport
Channel::processEvent

Config::handleEvent
View::handleEvent

setWall
setProjection

Frustum Update

Config::sendEvent
(VIEW_RESIZE)

Figure 48: Event Flow during a View Update

When a window is resized,
a CHANNEL RESIZE event is
generated. If the corre-
sponding channel has a view,
Channel::processEvent sends a
VIEW RESIZE event to the
application. This event con-
tains the identifier of the
view. The config event is dis-
patched to View::handleEvent
on the application thread.
Using the original size and
wall or projection description
of the view, a new wall or projection is computed, keeping the aspect ratio and
the height of the frustum constant. This new frustum is automatically applied by
Equalizer at the next config frame.

Figure 48 shows a sequence diagram of such a view update.

7.2.8. Region of Interest

Motivation Regions of interest (ROI) define which part of the framebuffer was up-
dated by the application. They allow Equalizer to perform important optimizations
during scalable rendering.

(a) (b)

Figure 49: ROI for a two-way(a) and four-way
DB(b) compound

The first optimization con-
cerns the compositing opera-
tion. The declared ROI al-
lows Equalizer to restrict the
readback, compression, net-
work transmission and assem-
bly to only the relevant pix-
els. This is particularly im-
portant for DB compounds,
where less screen space on
each channel is covered as re-
sources are added to the de-
composition. Figure 49 illus-

trates this for a two-way and four-way decomposition. Declaring the ROI alleviates
the increasing compositing cost as resources are added to a DB compound.

Figure 50: ROI for 2D load bal-
ancing

For 2D compounds, the same optimization is
applied, but has a smaller impact on the com-
positing performance. Figure 50 illustrates the
ROI for a four-way 2D compound.

The second optimization is important for load-
balanced 2D compounds. The 2D load equalizer
uses internal timing statistics to form a 2D load
grid for computing the split of the next frame.
Without ROI, an even load within each tile has to
be assumed. With ROI, an even load within the
declared, smaller region of interest can be used.
This causes a smaller error in the load estimation,
and therefore a more accurate load prediction.

76

7. The Equalizer Parallel Rendering Framework

Figure 50 illustrates this load grid for a four-way 2D compound with ROI (top)
and without ROI (bottom).

ROI in eqPly The application should declare its regions of interest during ren-
dering. This declaration can be very fine-grained, e.g., on each leaf node of a
scene graph. Equalizer will track and optimize multiple regions automatically. The
current implementation merges all regions of a single channel into one region for
compositing and load-balancing. Later Equalizer versions may use different, more
optimal, heuristics based on the application-declared regions.

Each leaf node of the kd-tree used in eqPly declares its region of interest when
it is rendered. The region is calculated by projecting the bounding box into screen
space and normalizing the resulting screen space rectangle:

void VertexBuf fe rLea f : : draw (VertexBuf f e rState& s t a t e) const
{

i f (s t a t e . stopRendering ())
return ;

s t a t e . updateRegion (boundingBox) ;

...

void VertexBuf f e rState : : updateRegion (const BoundingBox& box)
{

const Vertex co rne r s [8] = { Vertex (box [0] [0] , box [0] [1] , box [0] [2]) ,
Vertex (box [1] [0] , box [0] [1] , box [0] [2]) ,
Vertex (box [0] [0] , box [1] [1] , box [0] [2]) ,
Vertex (box [1] [0] , box [1] [1] , box [0] [2]) ,
Vertex (box [0] [0] , box [0] [1] , box [1] [2]) ,
Vertex (box [1] [0] , box [0] [1] , box [1] [2]) ,
Vertex (box [0] [0] , box [1] [1] , box [1] [2]) ,
Vertex (box [1] [0] , box [1] [1] , box [1] [2]) } ;

Vector4 f r eg i on (std : : numer i c l im i t s< f loat > : :max() ,
s td : : numer i c l im i t s< f loat > : :max() ,
−std : : numer i c l im i t s< f loat > : :max() ,
−std : : numer i c l im i t s< f loat > : :max()) ;

for (s i z e t i = 0 ; i < 8 ; ++i)
{

const Vertex corner = pmvMatrix ∗ co rne r s [i] ;
r eg i on [0] = std : : min (corner [0] , r eg i on [0]) ;
r eg i on [1] = std : : min (corner [1] , r eg i on [1]) ;
r eg i on [2] = std : : max(corner [0] , r eg i on [2]) ;
r eg i on [3] = std : : max(corner [1] , r eg i on [3]) ;

}

// transform reg ion o f i n t e r e s t from [−1 −1 1 1] to normalized v iewpor t
const Vector4 f normal ized (r eg i on [0] ∗ . 5 f + . 5 f ,

r eg i on [1] ∗ . 5 f + . 5 f ,
(r eg i on [2] − r eg i on [0]) ∗ . 5 f ,
(r eg i on [3] − r eg i on [1]) ∗ . 5 f) ;

dec la reReg ion (normal ized) ;

...

The declareRegion is eventually forwarded to eq::Channel::declareRegion.

7.2.9. Image Compositing for Scalable Rendering

Two task methods are responsible for collecting and compositing the result image
during scalable rendering. Scalable rendering is a use case of parallel rendering,
where multiple channels are contributing to a single view. This requires reading

77

7. The Equalizer Parallel Rendering Framework

back the pixel data from the source GPU and assembling it on the destination
GPU.

Channels producing one or more outputFrames use Channel::frameReadback to
read the pixel data from the frame buffer. The channels receiving one or multiple
inputFrames use Channel::frameAssemble to assemble the pixel data into the frame-
buffer. Equalizer takes care of the network transport of frame buffer data between
nodes.

Normally the programmer does not need to interfere with the image compositing.
Changes are sometimes required at a high level, for example to order the input
frames or to optimize the readback. The following sections describe the image
compositing API in Equalizer.

Compression Plugins Compression plugins allow the creation of runtime-loadable
modules for image compression. Equalizer will search predefined directories during
eq::init for dynamic shared objects (DSO) containing compression libraries (Equal-
izerCompressor*.dll on Windows, libEqualizerCompressor*.dylib on Mac OS X,
libEqualizerCompressor*.so on Linux).

The interface to a compression DSO is a C API, which allows to maintain binary
compatibility across Equalizer versions. Furthermore, the definition of an interface
facilitates the creation of new compression codecs for developers.

Please refer to the Equalizer API documentation on the website for the full spec-
ification for compression plugins. The Lunchbox and Equalizer DSOs double as
compression plugins and implement a set of compression engines, which can be
used as a reference implementation.

Each compression DSO may contain multiple compression engines. The number
of compressors in the DSO is queried by Equalizer using EqCompressGetNumCom-
pressors.

For each compressor, EqCompressorGetInfo is called to retrieve the information
about the compressor. The information contains the API version the DSO was
written against, a unique name of the compressor, the type of input data accepted
as well as information about the compressor’s speed, quality and compression ratio.

Each image transported over the network allocates its own compressor or decom-
pressor instance. This allows compressor implementations to maintain information
in a thread-safe manner. The handle to a compressor or decompressor instance is a
void pointer, which typically hides a C++ object instantiated by the compression
DSO.

A unit test is delivered with Equalizer which runs all compressors against a set
of images and provides performance information to calculate the compressor char-
acteristics.

Parallel Direct Send Compositing To provide a motivation for the design of the
image compositing API, the direct send parallel compositing algorithm is introduced
in this section. Other parallel compositing algorithms, e.g. binary-swap, can also
be expressed through an Equalizer configuration file.

Direct send has two important properties: an algorithmic complexity of O(1)
for each node, that is, the compositing cost per node is constant as resources are
added, and the capability to perform total ordering during compositing, e.g, to
back-to-front sort all contributions of a 3D volume rendering correctly.

The main idea behind direct send is to parallelize the costly recomposition for
database (sort-last) decomposition. With each additional source channel, the amount
of pixel data to be composited grows linearly. When using the simple approach of
compositing all frames on the destination channel, this channel quickly becomes the

78

7. The Equalizer Parallel Rendering Framework

bottleneck in the system. Direct send distributes this workload evenly across all
source channels, and thereby keeps the compositing work per channel constant.

re
ad
ba
ck

send/receive

co
m
po
sit
e

re
ad
ba
ck

ga
th
er

tile
s

source1
(destination) source 2 source 3

send/receive

Figure 51: Direct Send Compositing

In direct send compositing,
each rendering channel is also
responsible for the sort-last
composition of one screen-
space tile. It receives the
framebuffer pixels for its tile
from all the other channels.
The size of one tile decreases
linearly with the number of
source channels, which keeps
the total amount of pixel data
per channel constant.

After performing the sort-
last compositing, the color
information is transferred to
the destination channel, simi-
larly to a 2D (sort-first) com-
pound. The amount of pixel
data for this part of the
compositing pipeline also ap-
proaches a constant value,
i.e., the full frame buffer.

Figure 51 illustrates this algorithm for three channels. The Equalizer website
contains a presentation24 explaining and comparing this algorithm to the binary-
swap algorithm.

The following operations have to be possible to perform this algorithm:

• Selection of color and/or depth frame buffer attachments

• Restricting the read-back area to a part of the rendered area

• Positioning the pixel data correctly on the receiving channels

Frame, Frame Data and Images An eq::Frame references an eq::FrameData. The
frame data is the object connecting output with input frames. Output and input
frames with the same name within the same compound tree will reference the same
frame data.

The frame data is a holder for images and additional information, such as output
frame attributes and pixel data availability.

An eq::Image holds a two-dimensional snapshot of the framebuffer and can contain
color and/or depth information.

The frame synchronization through the frame data allows the input frame to
wait for the pixel data to become ready, which is signaled by the output frame after
readback.

Furthermore, the frame data transports the inherited range of the output frame’s
compound. The range can be used to compute the assembly order of multiple input
frames, e.g., for sorted-blend compositing in volume rendering applications.

The offset of input and output frames characterizes the position of the frame data
relative to the framebuffer, that is, the window’s lower-left corner. For output
frames this is the position of the channel relative to the window.

24http://www.equalizergraphics.com/documents/EGPGV07.pdf

79

http://www.equalizergraphics.com/documents/EGPGV07.pdf

7. The Equalizer Parallel Rendering Framework

Frame

Frame
Offset

FrameData

FrameData
PVP

Image

Image

Image
PVP

Figure 52: Hierarchy of Assembly Classes

For output frames, the
frame data’s pixel viewport is
the area of the frame buffer to
read back. It will transport
the offset from the source to
the destination channel, that
is, the frame data pixel view-
port for input frames posi-
tion the pixel data on the des-
tination. This has the ef-
fect that a partial framebuffer
readback will end up in the
same place in the destination
channels.

The image pixel viewport
signifies the region of inter-
est that will be read back.
The default readback opera-
tion reads back one image using the full pixel viewport of the frame data.

Figure 52 illustrates the relationship between frames, frame data and images.

The Compositor The Compositor class gathers a set of static functions which im-
plement the various compositing algorithms and low-level optimizations. Figure 53
provides a top-down functional overview of the various compositor functions.

On a high level, the compositor combines multiple input frames using 2D tiling,
depth-compositing for polygonal data or sorted, alpha-blended compositing for
semi-transparent volumetric data. These operations composite either directly all
images on the GPU, or use a CPU-based compositor and then transfer the preinte-
grated result to the GPU. The high-level entry points automatically select the best
algorithm. The CPU-based compositor uses OpenMP to accelerate its operation.

On the next lower level, the compositor provides functionality to composite a
single frame, either using 2D tiling (possibly with blending for alpha-blended com-
positing) or depth-based compositing.

The per-frame compositing in turn relies on the per-image compositing function-
ality, which automatically decides on the algorithm to be used (2D or depth-based).
The concrete per-image assembly operation uses OpenGL operations to composite
the pixel data into the framebuffer, potentially using GLSL for better performance.

Custom Assembly in eVolve The eVolve example is a scalable volume renderer. It
uses 3D texture-based volume rendering, where the volume is intersected by view-
aligned slices. The slices are rendered back-to-front and blended to produce the
final image, as shown in Figure 54(b)25.

When using 2D (sort-first) or stereo decompositions, no special programming is
needed to achieve good scalability, as eVolve is mostly fill-limited and therefore
scales nicely in these modes.

The full power of scalable volume rendering is however in DB (sort-last) com-
pounds, where the full volume is divided into separate bricks. Each of the bricks is
rendered like a separate volume. For recomposition, the RGBA frame buffer data
resulting from these render passes then has to be assembled correctly.

Conceptually, the individual volume bricks of each of the source channels pro-
duces pixel data which can be handled like one big ’slice’ through the full texture.

25Volume Data Set courtesy of: SFB-382 of the German Research Council (DFG)

80

7. The Equalizer Parallel Rendering Framework

En
tr

y

assembleFrames

_useCPUAssembly?

assembleFramesCPU

n

mergeFramesCPU

assembleImage

get next ready frame

assembleFrame

buffers?

color

assembleImage2D assembleImageDB

color & depth

Error /
Unsupported

else

assembleFramesUnsorted

setupStencilBuffer

drawPixels

OpenGL < 2.0?

y

n

assembleImageDB_GLSLassembleImageDB_FF

draw textured quad using
GLSL shader

Success

Start

assembleFramesSorted

_useCPUAssembly?

y

n

for each frame

for each image

Fr
am

e
O

pe
ra

tio
ns

C
om

po
si

tin
g

Se
tu

p
Im

ag
e

C
om

po
si

tin
g

O
pe

nG
L

O
pe

ra
tio

ns

If averaging is used (subpixel):
 for each subpixel param
 extract all frames with param
 call self with extracted frames
 accumulate result
 display average of accumulation

declareRegion

declareRegion declareRegion

Figure 53: Functional Diagram of the Compositor

Therefore they have to be blended back-to-front in the same way as the slice planes
are blended during rendering.

Database decomposition has the advantage of scaling any part of the volume
rendering pipeline: texture and main memory (smaller bricks for each channel), fill
rate (less samples per channel) and IO bandwidth for time-dependent data (less data
update per time step and channel). Since the amount of texture memory needed
for each node decreases linearly, sort-last rendering makes it possible to render data
sets which are not feasible to visualize with any other approach.

For recomposition, the 2D frame buffer contents are blended to form a seamless
picture. For correct blending, the frames are ordered in the same back-to-front

81

7. The Equalizer Parallel Rendering Framework

(a)

View
Direction

(b)

Figure 54: Final Result(a) of Figure 55(b) using Volume Rendering based on 3D
Texture Slicing(b).

order as the slices used for rendering, and use the same blending parameters. Sim-
plified, the frame buffer images are ‘thick’ slices which are ‘rendered’ by writing
their content to the destination frame buffer using the correct order.

For orthographic rendering, determining the compositing order of the input frames
is trivial. The screen-space orientation of the volume bricks determines the order
in which they have to be composited. The bricks in eVolve are created by slic-
ing the volume along one dimension. Therefore the range of the resulting frame
buffer images, together with the sorting order, is used to arrange the frames during
compositing. Figure 55(a) shows this composition for one view.

Bac
k t

o F
ron

t

Com
po

siti
ng

Zmodel

Zview
α

near
plane

(a)

1 2 3 4

(b)

Figure 55: Back-to-Front Compositing for Orthogonal and Perspective Frusta

Finding the correct assembly order for perspective frusta is more complex. The
perspective distortion invalidates a simple orientation criteria like the one used for
orthographic frusta. For the view and frustum setup shown in Figure 55(b)26 the
correct compositing order is 4-3-1-2 or 1-4-3-2.

26Volume Data Set courtesy of: AVS, USA

82

7. The Equalizer Parallel Rendering Framework

To compute the assembly order, eVolve uses the angle between the origin → slice
vector and the near plane, as shown in Figure 55(b). When the angle becomes
greater than 90°, the compositing order of the remaining frames has to be changed.
The result image of this composition naturally looks the same as the volume ren-
dering would when rendered on a single channel. Figure 54(a) shows the result of
the composition from Figure 55(b).

The assembly algorithm described in this section also works with parallel com-
positing algorithms such as direct-send.

7.2.10. Subpixel Processing

In eqPly, the image quality is gradually refined when the camera is not moving.
Up to 256 samples per pixel are accumulated to implement idle antialiasing. This
feature is compatible with subpixel compounds, which use a fixed non-idle anti-
aliasing and then accelerate the generation of the remaining samples. The same
basic algorithm might be applied to other multisampling effects, e.g., depth-of-field.

Transparent Software Anti-Aliasing Any Equalizer applications can benefit with-
out modification from subpixel compounds. Applications performing their own,
configurable idle or non-idle anti-aliasing can easily be integrated with subpixel
compounds, as described in the next sections.

The default implementation of applyFrustum and applyOrtho in eq::Channel jitter
the frustum when a subpixel parameter is set. Furthermore, the Compositor uses an
eq::Accum buffer to accumulate and display the results of a subpixel decomposition
in assembleFramesUnsorted and assembleFramesSorted.

Software Anti-Aliasing in eqPly The supersampling algorithm used by eqPly per-
forms anti-aliasing, using a technique which computes randomized samples within
a pixel by jittering the frustum by a subpixel amount. The pixel is split into an
16x16 subpixel grid, and a sample is taken randomly within each subpixel. The
samples are accumulated and displayed after each step.

To accumulate the result, each eqPly::Channel maintains an accumulation buffer
for each rendered eye pass. This accumulation buffer is lazily allocated and resized
at the beginning of each frame:

// s e t up accumulation b u f f e r
accum . b u f f e r = new eq : : u t i l : : Accum(glewGetContext ()) ;
const eq : : Pixe lViewport& pvp = getPixe lViewport () ;
LBASSERT(pvp . i s V a l i d ()) ;

i f (! accum . bu f f e r−> i n i t (pvp , getWindow()−>getColorFormat ()) | |
accum . bu f f e r−>getMaxSteps () < 256)

{
LBWARN <<”Accumulation b u f f e r i n i t i a l i z a t i o n f a i l e d , ”

<< ” i d l e AA not a v a i l a b l e . ” << std : : endl ;
delete accum . b u f f e r ;
accum . b u f f e r = 0 ;
accum . step = −1;
return fa l se ;

}

// e l s e
LBVERB << ” I n i t i a l i z e d ”

<< (accum . bu f f e r−>usesFBO () ? ”FBO accum” : ”glAccum”)
<< ” b u f f e r f o r ” << getName () << ” ” << getEye ()
<< std : : endl ;

view−>s e t I d l e S t e p s (accum . b u f f e r ? 256 : 0) ;
return true ;

83

7. The Equalizer Parallel Rendering Framework

In idle mode, the results are accumulated at the end of the frame and displayed
after each iteration by frameViewFinish. Since frameViewFinish is only called on
destination channels this operation is done only on the final rendering result after
assembly. When all the steps are done the config will stop rendering new frames.

If the current pixel viewport is different from the one saved in frameViewStart,
the accumulation buffer needs also to be resized and the idle anti-aliasing is reset:

const eq : : Pixe lViewport& pvp = getPixe lViewport () ;
const bool i s R e s i z e d = accum . bu f f e r−>r e s i z e (pvp) ;

i f (i s R e s i z e d)
{

const View∗ view = static cast< const View∗ >(getView ()) ;
accum . bu f f e r−>c l e a r () ;
accum . s tep = view−>g e t I d l e S t e p s () ;
accum . stepsDone = 0 ;

}
else i f (frameData . i s I d l e ())
{

setupAssemblyState () ;

i f (! i sDone () && accum . t r a n s f e r)
accum . bu f f e r−>accum () ;

accum . bu f f e r−>d i s p l ay () ;

resetAssemblyState () ;
}

The subpixel area is a function of the current jitter step, the channel’s subpixel
description and the idle state. Each source channel is responsible for filling a subset
of the sampling grid. To quickly converge to a good anti-aliasing, each channel
selects its samples using a pseudo-random approach, using a precomputed prime
number table to find the subpixel for the current step:

eq : : Vector2 i Channel : : g e t J i t t e r S t e p () const
{

const eq : : SubPixel& subPixe l = getSubPixe l () ;
const u i n t 3 2 t channelID = subPixe l . index ;
const View∗ view = static cast< const View∗ >(getView ()) ;
i f (! view)

return eq : : Vector2 i : :ZERO;

const u i n t 3 2 t t o t a l S t e p s = u i n t 3 2 t (view−>g e t I d l e S t e p s ()) ;
i f (t o t a l S t e p s != 256)

return eq : : Vector2 i : :ZERO;

const Accum& accum = accum [lunchbox : : getIndexOfLastBit (getEye ())] ;
const u i n t 3 2 t subset = t o t a l S t e p s / getSubPixe l () . s i z e ;
const u i n t 3 2 t index = (accum . step ∗ pr imes [channelID % 100])%subset +

(channelID ∗ subset) ;
const u i n t 3 2 t sampleSize = 16 ;
const int dx = index % sampleSize ;
const int dy = index / sampleSize ;

return eq : : Vector2 i (dx , dy) ;
}

The FrameData class holds the applications idle mode. The Config updates the
idle mode information depending on the application’s state. Each Channel performs
anti-aliasing when no user event requires a redraw.

When the rendering is not in idle mode, the jitter is queried from Equalizer which
returns an optimal subpixel offset for the given subpixel decomposition. This is used
during normal rendering of subpixel compounds:

eq : : Vector2 f Channel : : g e t J i t t e r () const
{

84

7. The Equalizer Parallel Rendering Framework

const FrameData& frameData = getFrameData () ;
const Accum& accum = accum [lunchbox : : getIndexOfLastBit (getEye ())] ;

i f (! frameData . i s I d l e () | | accum . step <= 0)
return eq : : Channel : : g e t J i t t e r () ;

During idle rendering of any decomposition, the jitter for the frustum is computed
using the normalized subpixel center point and the size of a pixel on the near plane.
A random position within the sub-pixel is set as a sample position, which will be used
to move the frustum. The getJitter method will return the computed jitter vector
for the current frustum. This method has a default implementation in eq::Channel
for subpixel compounds, but is overwritten in eqPly to perform idle anti-aliasing:

const eq : : Vector2 i j i t t e r S t e p = g e t J i t t e r S t e p () ;
i f (j i t t e r S t e p == eq : : Vector2 i : :ZERO)

return eq : : Vector2 f : :ZERO;

const eq : : Pixe lViewport& pvp = getPixe lViewport () ;
const f loat pvp w = f loat (pvp .w) ;
const f loat pvp h = f loat (pvp . h) ;
const f loat frustum w = f loat ((getFrustum () . get width ())) ;
const f loat f rustum h = f loat ((getFrustum () . g e t h e i g h t ())) ;

const f loat p ixe l w = frustum w / pvp w ;
const f loat p i x e l h = frustum h / pvp h ;

const f loat sampleSize = 16 . f ; // s q r t (256)
const f loat subpixe l w = pixe l w / sampleSize ;
const f loat subp ixe l h = p i x e l h / sampleSize ;

// Sample va lue randomly computed wi th in the s u b p i x e l
lunchbox : :RNG rng ;
const eq : : P ixe l& p i x e l = g e t P i x e l () ;

const f loat i = (rng . get< f loat >() ∗ subpixe l w +
f loat (j i t t e r S t e p . x ()) ∗ subpixe l w) / f loat (p i x e l .w) ;

const f loat j = (rng . get< f loat >() ∗ subp ixe l h +
f loat (j i t t e r S t e p . y ()) ∗ subp ixe l h) / f loat (p i x e l . h) ;

return eq : : Vector2 f (i , j) ;

Subpixel Compounds in eqPly Subpixel compounds accelerate the idle anti-aliasing
computation in eqPly. The accumulation buffer used in the Compositor in frame-
Assemble is the same accumulation buffer used by eqPly in frameViewFinish for
collecting the idle anti-aliasing results.

When an application passes an eq::Accum object to the compositor, the compos-
itor adds subpixel decomposition result into this accumulation buffer. Otherwise it
uses its own accumulation buffer, which it clears in the beginning of the compositing
process.

Since eqPly accumulates the results over multiple rendering frames, each Channel
manages its own accumulation buffer, which is passed to the compositor in frame-
Assemble and used in frameViewFinish to display the results accumulated so far.

The number of performed jitter steps is tracked in frameDraw and frameAssem-
ble, and is used in frameFinish to decrement the outstanding anti-aliasing samples.
Therefore, the idle anti-aliasing is finished much faster if the current configuration
uses a subpixel compound.

7.2.11. Statistics

Statistics Gathering Statistics are measured in milliseconds since the configura-
tion was initialized. The server synchronizes the per-configuration clock on each

85

7. The Equalizer Parallel Rendering Framework

node automatically. Each statistic event records the originator’s (channel, window,
pipe, node, view or config) unique identifier.

Statistics are enabled per entity using an attribute hint. The hint determines
how precise the gathered statistics are. When set to fastest, the per-frame clock is
sampled directly when the event occurs. When set to nicest, all OpenGL commands
will be finished before sampling the event. This may incur a performance penalty,
but gives more correct results. The default setting is fastest in release builds, and
nicest in debug builds. The fastest setting often attributes times to the opera-
tion causing an OpenGL synchronization instead of the operation submitting the
OpenGL commands, e.g., the readback time contains operations from the preceding
draw operation.

Figure 56: Statistics for a two node 2D compound

The events are processed
by the channel’s and win-
dow’s processEvent method.
The default implementation
sends these events to the con-
fig using Config::sendEvent, as
explained in Section 7.2.1.
When the default implemen-
tation of Config::handleEvent
receives the statistics event, it
sorts the event per frame and
per originator. When a frame
has been finished, the events
are pushed to the local (app-
)node for visualization. Fur-
thermore, the server also re-
ceives these events, which are
used by the equalizers to implement the various runtime adjustments.

Figure 56 shows the visualization of statistics events in an overlay27.

Statistics Overlay The eq::Channel provides the method drawStatistics which ren-
ders a statistics overlay using the gathered statistics events. Statistics rendering is
toggled on and off using the ’s’ key in the shipped Equalizer examples.

Figure 57 shows a detailed view of Figure 56. The statistics shown are for a two-
node 2D compound. The destination channel is on the appNode and contributes to
the rendering.

Figure 57: Detail of the Statistics from Figure 56.

This configuration executes two Channel::frameDraw tasks, one Channel::frame-
Readback task on the remote node, one Channel::frameAssemble task on the local
node, as well as frame transmission and compression.

273D model courtesy Cyberware, Inc.

86

7. The Equalizer Parallel Rendering Framework

The X axis is the time, the right-most pixel is the most current time. One pixel
on the screen corresponds to a given time unit, here one millisecond per pixel. The
scale is zoomed dynamically to powers-of-ten milliseconds to fit the statistics into
the available viewport. This allows easy and accurate evaluations of bottlenecks or
misconfigurations in the rendering pipeline. The scale of the statistics is printed
directly above the legend.

On the Y axis are the entities: channels, windows, nodes and the config. The
top-most channel is the local channel since it executes frameAssemble, and the lower
channel is the remote channel, executing frameReadback.

To facilitate the understanding, older frames are gradually grayed out. The right-
most, current frame is brighter than the frame before it.

The configuration uses the default latency of one frame. Consequently, the exe-
cution of two frames overlaps. This can be observed in the early execution of the
remote channel’s frameDraw, which starts while the local channel is still drawing
and assembling the previous frame.

The asynchronous execution allows operations to be pipelined, i.e., the compres-
sion, network transfer and assembly with the actual rendering and readback. This
increases performance by minimizing idle and wait times. In this example, the re-
mote channel2 has no idle times, and executes the compression and network transfer
of its output frame in parallel with rendering and readback. Likewise, the applica-
tion node receives and decompresses the frame in parallel to its rendering thread.

In the above example, the local channel finishes drawing the frame early, and
therefore spends a couple of milliseconds waiting for the input frame from the re-
mote channel. These wait events, rendered red, are a sub-event of the yellow frame-
Assemble task. Using a load equalizer instead of a static 2D decomposition would
balance the rendering in this example better and minimize or even eliminate this
wait time.

The white Window::swapBuffers task might take a longer time, since the execution
of the swap buffer is locked to the vertical retrace of the display. Note that the
remote source window does not execute swapBuffers in this configuration, since it
is a single-buffered FBO.

The beginning of a frame is marked by a vertical green line, and the end of a frame
by a vertical gray line. These lines are also attenuated. The brightness and color
matches the event for Config::startFrame and Config::finishFrame, respectively. The
event for startFrame is typically not visible, since it takes less than one millisecond
to execute. If no idle processing is done by the application, the event for finishFrame
occupies a full frame, since the config is blocked here waiting for the frame current
- latency to complete.

A legend directly below the statistics facilitates understanding. It lists the per-
entity operations with its associated color. Furthermore, some other textual infor-
mation is overlayed with the statistics. The total compression ratio is printed with
each readback and compression statistic. In this case the image has been not been
compressed during download. For network transfer it has been compressed to 1%
of its original size since it contains many black background pixels. For readback the
plugin with the name 0x101, EQ COMPRESSOR TRANSFER RGBA TO BGRA has
been used, and for compression the plugin 0x11, EQ COMPRESSOR RLE DIFF BGRA
was used. The compressor names are listed in the associated plugin header com-
pressorTypes.h.

7.2.12. GPU Computing with CUDA

The Equalizer parallel rendering framework can be used to scale GPU computing
applications (also known as GPGPU) based on CUDA. The necessary steps to write
a distributed GPGPU application using Equalizer are described in this section.

87

8. The Collage Network Library

Please note that the support for CUDA is only enabled if the CUDA libraries are
found in their default locations. Otherwise please adapt the build system accord-
ingly.

CUDA Initialization Equalizer automatically initializes a CUDA context on each
pipe (using the specified device number) whenever hint cuda GL interop is set. The
initialization is currently done using the CUDA runtime API to support device
emulation. On the other side, if this hint is not set the OpenGL interop feature
is not enabled, and furthermore, the GPU which executes CUDA code defaults to
device 0.

Once CUDA is initialized correctly, C for CUDA can be used as any other GPU
programming interface.

CUDA Memory Management Equalizer does not provide any facility to perform
memory transfer from and to the CUDA devices. This is entirely left to the pro-
grammer.

8. The Collage Network Library

The Collage network library provides a peer-to-peer communication infrastructure.
It is used by Equalizer to communicate between the application node, the server
and the render clients. It can also be used by applications to implement distributed
processing independently or complementary to the Equalizer functionality.

The network library is a separate project on github, implemented in the co names-
pace. It provides networking functionality of different abstraction layers, gradually
providing higher level functionality for the programmer. The main primitives in
Collage are:

Connection A stream-oriented point-to-point communication line. Different imple-
mentations of a connection exists. The connections transmit raw data reliably
between two endpoints for unicast connections, and between a set of endpoints
for multicast connections.

DataOStream Abstracts the output of C++ data types onto a set of connections
by implementing output stream operators. Uses buffering to aggregate data
for network transmission.

OCommand Extends DataOStream, implements the protocol between Collage nodes.

DataIStream Decodes a buffer of received data into C++ objects and PODs by
implementing input stream operators. Performs endian swapping if the endi-
anness differs between the originating and local node.

ICommand The other side of OCommand, extending DataIStream.

Node and LocalNode The abstraction of a process in the cluster. Nodes commu-
nicate with each other using connections. A LocalNode listens on various con-
nections and processes requests for a given process. Received data is wrapped
in ICommands and dispatched to command handler methods. A Node is a
proxy for a remote LocalNode.

Object Provides object-oriented, versioned data distribution of C++ objects be-
tween nodes within a session. Objects are registered or mapped on a Local-
Node.

Figure 58 provides an overview of the major collage classes and their relationship,
as discussed in the following sections.

88

8. The Collage Network Library

uint128_t commit()
uint128_t sync()
UUID getID()
uint128_t getVersion()

ObjectOCommand send(cmd)

Object

bool dispatch(Command)
register(cmd, func, queue)

Dispatcher

bool listen()
bool close()
bool connect(Node)
bool connect(NodeID)

void registerObject(Object)
bool mapObject(Object)
void deregisterObject(Object)
void unmapObject(Object)

bool dispatch(Command)

LocalNode

*

type = CO_OBJECT
UUID objectID

ObjectOCommand

<<dispatch>>

objectID

OCommand send(cmd)
OCommand multicast(cmd)

Node

*

operator <<
OCommand

<<send>>

<<recv>>
1

ConnectionType type
[Connection Parameters]

ConnectionDescription *

addConnection()
removeConnection()
select()

ConnectionSet
listen()
connect()
close()
send(void* data)
recv(BufferPtr data)

Connection

*
1

1

operator >>
invoke

ICommand
uint64_t getSize()
uint8_t* getData()

Buffer 1

UUID objectID
uint32_t instanceID

ObjectOCommand

Figure 58: UML class diagram of the major Collage classes

8.1. Connections

The co::Connection is the basic primitive used for communication between processes
in Equalizer. It provides a stream-oriented communication between two endpoints.

A connection is either closed, connected or listening. A closed connection cannot
be used for communications. A connected connection can be used to read or write
data to the communication peer. A listening connection can accept connection
requests.

A co::ConnectionSet is used to manage multiple connections. The typical use case
is to have one or more listening connections for the local process, and a number of
connected connections for communicating with other processes.

The connection set is used to select one connection which requires some action.
This can be a connection request on a listening connection, pending data on a
connected connection or the notification of a disconnect.

The connection and connection set can be used by applications to implement
other network-related functionality, e.g., to communicate with a sound server on a
different machine.

8.2. Command Handling

Nodes and objects communicate using commands derived from data streams. The
basic command dispatch is implemented in the co::Dispatcher class, from which
co::Node and co::Object are sub-classed.

The dispatcher allows the registration of a commands with a dispatch queue
and an invocation method. Each command has a type and command identifier,
which is used to identify the receiver, registered queue and method. The method
dispatchCommand pushes the packet to the registered queue and sets the registered
command function on the ICommand. When the commands are dequeued by the
processing thread the registered method is executed using ICommand::invoke.

A command function groups the method and this pointer, allowing to call a C++
method on a concrete instance. If no queue is registered for a certain command,
dispatchCommand directly calls the registered command function directly.

89

8. The Collage Network Library

This dispatch and invocation functionality is used within Equalizer to dispatch
commands from the receiver thread to the appropriate node or pipe thread, and
then to invoke the command when it is processed by these threads.

8.3. Nodes

The co::Node is the abstraction of one process in the cluster. Each node has a
universally unique identifier. This identifier is used to address nodes, e.g., to query
connection information to connect to the node. Nodes use connections to commu-
nicate with each other by sending co::OCommands.

The co::LocalNode is the specialization of the node for the given process. It
encapsulates the communication logic for connecting remote nodes, as well as object
registration and mapping. Local nodes are set up in the listening state during
initialization.

A remote Node can either be connected explicitly by the application or due to
a connection from a remote node. The explicit connection can be done by pro-
grammatically creating a node, adding the necessary ConnectionDescriptions and
connecting it to the local node. It may also be done by connecting the remote node
to the local node by using its NodeID. This will cause Collage to query connection
information for this node from the already-connected nodes, instantiating the node
and connecting it. Both operations may fail.

8.3.1. Zeroconf Discovery

Each LocalNode provides a co::Zeroconf communicator, which allows node and re-
source discovery. This requires using a Lunchbox library supporting dns sd. The
service ” collage. tcp” is used to announce the presence of a listening LocalNode
using the ZeroConf protocol to the network, unless the local node has no listening
connections. The node identifier and all listening connection descriptions are an-
nounced using keys starting with ”co ”. Internally Collage uses this information to
connect unknown nodes by using the node identifier alone.

Applications may use the ZeroConf communicator to add additional key-value
pairs to announce application-specific data, and to retrieve a snapshot of all key-
value pairs of all discovered nodes on the network.

8.3.2. Communication between Nodes

LocalNode

*
1

Node

Connection

LocalNode

*
1

Node

OCommand
ICommand

<<send>>

<<recv>>

 Connectionbyte stream

Dispatcher

DataOStream
DataIStream

CommandFunc

*
1

*
1

Figure 59: Communication between two Nodes

Figure 59 shows the commu-
nication between two nodes.
When the remote node sends
a command, the listening
node receives the command
and dispatches it from the
receiver thread using the
method dispatchCommand. The
default implementation knows
how to dispatch commands of
type node or object. Applica-
tions can define custom data
types for commands, and then have to extend dispatchCommand to handle these
custom data types.

Node commands are directly dispatched using Dispatcher::dispatchCommand. For
object commands, the appropriate object is found on the local node and Object::dis-
patchCommand is called on the instance to dispatch the command.

90

8. The Collage Network Library

If dispatchCommand returns false, the command will be re-dispatched later. This
is used if an object has not been mapped locally, and therefore the command could
not be dispatched.

If an application wants to extend communication on the node level, it can de-
fine its own datatype for commands, define custom node commands or use custom
commands.

Commands with a custom datatype use a command type greater or equal than
COMMAND CUSTOM. The receiving local node has to override LocalNode::dispatch-
Command to handle them.

Custom node commands use the command type COMMAND NODE and any com-
mand greater than CMD NODE CUSTOM. By registering a co::CommandFunc on
the receiving local node for these commands, the co::Dispatcher dispatch and invoke
mechanism is used automatically.

These two aforementioned mechanisms are very efficient but require a clear, linear
inheritance from co::LocalNode. In more complex scenarios, e.g., when two libraries
share the same local node for communication, custom commands can be used. Cus-
tom commands are indentified by a unique 128 bit integer, which is either generated
randomly or based on a hash of a unique URI:

const co : : u i n t128 t cmdID1(lunchbox : : make uint128 (”ch . e y e s c a l e . c o l l a g e . t e s t . c1”)) ;
const co : : u i n t128 t cmdID2(lunchbox : : make uint128 (”ch . e y e s c a l e . c o l l a g e . t e s t . c2”)) ;

A specialized Node::send method transmits a CustomOCommand. The application
has to register a custom command handler on the receiving side, which will be
invoked during processing of the command on the given thread queue:

s e rver−>registerCommandHandler (cmdID1 ,
boost : : bind (&MyLocalNode : : cmdCustom1 ,

s e r v e r . get () , 1) ,
s e rver−>getCommandThreadQueue ()) ;

s e rver−>registerCommandHandler (cmdID2 ,
boost : : bind (&MyLocalNode : : cmdCustom2 ,

s e r v e r . get () , 1) , 0) ;

Like any other output command, CustomOCommands allow streaming additional
data to the command:

serverProxy−>send (cmdID1) ;
serverProxy−>send (cmdID2) << std : : s t r i n g (” h e l l o ”) ;

8.4. Objects

Distributed objects provide powerful, object-oriented data distribution for C++
objects. They facilitate the implementation of data distribution in a cluster envi-
ronment. Their functionality and an example use case for parallel rendering has
been described in Section 7.1.3.

Distributed objects subclass from co::Serializable or co::Object. The application
programmer implements serialization and deserialization of the distributed data.
Objects are dynamically attached to a listening local node, which manages the
network communication and command dispatch between different instances of the
same distributed object.

Objects are addresses using a universally unique identifier. The identifier is au-
tomatically created in the object constructor. The master version of a distributed
object is registered with the co::LocalNode. The identifier of the master instance
can be used by other nodes to map their instance of the object, thus synchronizing
the object’s data and identifier with the remotely registered master version.

One instance of an object is registered with its local node, which makes this object
the master instance. Slave instance on the same or other nodes are mapped to this

91

8. The Collage Network Library

master. During mapping they are initialized by transmitting a version of the master
instance data. During commit, the change delta is pushed from the master to all
mapped slave objects, using multicast connections when available. Slave objects
can also commit data to their master instance, which in turn may recommit it to
all slaves, as described in Section 8.4.4. Objects can push their instance data to a
set of nodes, as described in Section 8.4.5.

Distributed objects can be static (immutable) or dynamic. Dynamic objects are
versioned. New versions are committed from the master instance, which sends the
delta between the previous and current version to all mapped slave objects. The
slave objects sync the queued deltas when they need a version.

Objects may have a maximum number of unapplied versions, which will cause
the commit on the master instance to block if any slave instance has reached the
maximum number of queued versions. By default, slave instances can queue an
unlimited amount of unapplied versions.

Objects use compression plugins to reduce the amount of data sent over the net-
work. By default, the plugin with the highest compression ratio and lossless com-
pression for EQ COMPRESSOR DATATYPE BYTE tokens is chosen. The applica-
tion may override Object::chooseCompressor to deactivate compression by returning
EQ COMPRESSOR NONE or to select object-specific compressors.

8.4.1. Common Usage for Parallel Rendering

Distributed objects are addressed using universally unique identifiers, because point-
ers to other objects cannot be distributed directly; they have no meaning on remote
nodes.

The entry point for shared data on a render client is the identifier passed by the
application to eq::Config::init. This identifier typically contains the identifier of a
static distributed object, and is passed by Equalizer to all configInit task methods.
Normally this initial object is mapped by the render clients in Node::configInit. It
normally contains identifiers of other shared data objects.

The distributed data objects referenced by the initial data object are often ver-
sioned objects, to keep them in sync with the rendered frames. Similar to the initial
identifier passed to Config::init, an object identifier or object version can be passed
to Config::startFrame. Equalizer will pass this identifier to all frameStart task meth-
ods. In eqPly, the frame-specific data, e.g., the global camera data, is versioned.
The frame data identifier is passed in the initial data, and the frame data version
is passed with each new frame request.

There are multiple ways of implementing data distribution for an existing C++
class hierarchy, such as a scene graph:

Subclassing The classes to be distributed inherit from co::Object and implement
the serialization methods. This approach is recommended if the source code
of existing classes can be modified. It is used for eqPly::InitData and eq-
Ply::FrameData. (Figure 60(a))

Proxies For each object to be distributed, a proxy object is created which manages
data distribution for its associated object. This requires the application to
track changes on the object separately from the object itself. The model data
distribution of eqPly is using this pattern. (Figure 60(b))

Multiple Inheritance A new class inheriting from the class to be distributed and
from co::Object implements the data distribution. This requires the applica-
tion to instantiate a different type of object instead of the existing object,
and to create wrapper methods in the superclass calling the original method

92

8. The Collage Network Library

and setting the appropriate dirty flags. This pattern is not used in eqPly.
(Figure 60(c))

co::Object
getInstanceData
applyInstanceData
pack
unpack

Foo::Class

(a)

1

co::Object

getInstanceData
applyInstanceData
pack
unpack

Foo::Proxy Foo::Class

(b)

co::Object

getInstanceData
applyInstanceData
pack
unpack

Foo::Distributed

Foo::Node

(c)

Figure 60: Object Distribution using Subclassing, Proxies or Multiple Inheritance

8.4.2. Change Handling and Serialization

Equalizer determines the way changes are to be handled by calling Object::get-
ChangeType during the registration of the master version of a distributed object.
The change type determines the memory footprint and the contract for the seri-
alization methods. The deserialization always happens in the application thread
causing the deserialization. The following change types are possible:

STATIC The object is not versioned nor buffered. The instance data is serial-
ized whenever a new slave instance is mapped. The serialization happens in
the command thread on the master node, i.e., in parallel to the application
threads. Since the object’s distributed data is supposed to be static, this
should not create any race conditions. No additional data is stored.

INSTANCE The object is versioned and buffered. The instance and delta data are
identical, that is, only instance data is serialized. The serialization always
happens before LocalNode::registerObject or Object::commit returns. Previous
instance data is saved to be able to map old versions.

DELTA The object is versioned and buffered. The delta data is typically smaller
than the instance data. Both the delta and instance data are serialized be-
fore Object::commit returns. The delta data is transmitted to slave instances
for synchronization. Previous instance data is saved to be able to map old
versions.

UNBUFFERED The object is versioned and unbuffered. No data is stored, and
no previous versions can be mapped. The instance data is serialized from the
command thread whenever a new slave instance is mapped, i.e., in parallel
to application threads. The application has to ensure that this does not cre-
ate any thread conflicts. The delta data is serialized before Object::commit
returns. The application may choose to use a different, more optimal imple-
mentation to pack deltas by using a different implementation for getInstance-
Data and pack.

8.4.3. co::Serializable

co::Serializable implements one typical usage pattern for data distribution for co::Object.
The co::Serializable data distribution is based on the concept of dirty bits, allowing
inheritance with data distribution. Dirty bits form a 64-bit mask which marks the
parts of the object to be distributed during the next commit. It is easier to use,
but imposes one typical way to implement data distribution.

93

8. The Collage Network Library

For serialization, the default co::Object serialization functions are implemented
by co::Serializable, which (de-)serializes and resets the dirty bits, and calls serialize
or deserialize with the bit mask specifying which data has to be transmitted or
received. During a commit or sync, the current dirty bits are given, whereas during
object mapping all dirty bits are passed to the serialization methods.

To use co::Serializable, the following steps have to be taken:

Inherit from co::Serializable: The base class will provide the dirty bit management
and call serialize and deserialize appropriately. By optionally overriding get-
ChangeType, the default versioning strategy might be changed:

namespace eqPly
{

/∗∗
∗ Frame−s p e c i f i c data .
∗
∗ The frame−s p e c i f i c data i s used as a per−con f i g d i s t r i b u t e d o b j e c t and
∗ conta ins mutable , rendering−r e l e v an t data . Each render ing thread (pipe)
∗ keeps i t s own ins tance synchronized with the frame cu r r en t l y be ing
∗ rendered . The data i s managed by the Config , which modi f i e s i t d i r e c t l y .
∗/

class FrameData : public co : : S e r i a l i z a b l e
{

Define new dirty bits: Define dirty bits for each data item by starting at Serial-
izable::DIRTY CUSTOM, shifting this value consecutively for each new dirty
bit:

/∗∗ The changed par t s o f the data s ince the l a s t pack () . ∗/
enum Dir tyBi t s
{

DIRTY CAMERA = co : : S e r i a l i z a b l e : : DIRTY CUSTOM << 0 ,
DIRTY FLAGS = co : : S e r i a l i z a b l e : : DIRTY CUSTOM << 1 ,
DIRTY VIEW = co : : S e r i a l i z a b l e : : DIRTY CUSTOM << 2 ,
DIRTY MESSAGE = co : : S e r i a l i z a b l e : : DIRTY CUSTOM << 3 ,

} ;

Implement serialize and deserialize: For each object-specific dirty bit which is set,
stream the corresponding data item to or from the provided stream. Call the
parent method first in both functions. For application-specific objects, write
a (de-)serialization function:

void FrameData : : s e r i a l i z e (co : : DataOStream& os , const u i n t 6 4 t d i r t y B i t s)
{

co : : S e r i a l i z a b l e : : s e r i a l i z e (os , d i r t y B i t s) ;
i f (d i r t y B i t s & DIRTY CAMERA)

os << p o s i t i o n << r o t a t i o n << modelRotation ;
i f (d i r t y B i t s & DIRTY FLAGS)

os << modelID << renderMode << colorMode << q u a l i t y << or tho
<< s t a t i s t i c s << he lp << wire f rame << pi lotMode << i d l e
<< compress ion ;

i f (d i r t y B i t s & DIRTY VIEW)
os << currentViewID ;

i f (d i r t y B i t s & DIRTY MESSAGE)
os << message ;

}

void FrameData : : d e s e r i a l i z e (co : : DataIStream& is , const u i n t 6 4 t d i r t y B i t s)
{

co : : S e r i a l i z a b l e : : d e s e r i a l i z e (i s , d i r t y B i t s) ;
i f (d i r t y B i t s & DIRTY CAMERA)

i s >> p o s i t i o n >> r o t a t i o n >> modelRotation ;
i f (d i r t y B i t s & DIRTY FLAGS)

i s >> modelID >> renderMode >> colorMode >> q u a l i t y >> or tho

94

8. The Collage Network Library

>> s t a t i s t i c s >> he lp >> wire f rame >> pi lotMode >> i d l e
>> compress ion ;

i f (d i r t y B i t s & DIRTY VIEW)
i s >> currentViewID ;

i f (d i r t y B i t s & DIRTY MESSAGE)
i s >> message ;

}

Mark dirty data: In each ’setter’ method, call setDirty with the corresponding dirty
bit:

void FrameData : : setCameraPos it ion (const eq : : Vector3 f& p o s i t i o n)
{

p o s i t i o n = p o s i t i o n ;
s e tD i r ty (DIRTY CAMERA) ;

}

The registration and mapping of co::Serializables is done in the same way as for
co::Objects, which has been described in Section 8.4.

8.4.4. Slave Object Commit

Versioned slave objects may also commit data to the master instance. However,
this requires the implementation to take special care to resolve conflicts during de-
serialization. The algorithm and constraints for slave object commits are explained
in this section.

When using commit on slave object instances, multiple modifications on the same
database may happen simultaneously. To avoid excessive synchronization in the
network layer, Equalizer implements a lightweight approach which requires the ap-
plication to avoid or handle conflicting changes on the same object.

co::Object
Master

co::Object
Slave 1

New Versions
sync

modify

commit

packDelta

co::Object
Slave 2

sync

notifyNewVersion

sync

[modify]

sync sync

commit

pack New Version
Delta

Figure 61: Slave Commit Communication Sequence

When a slave object in-
stance commits data, pack is
called on the object. The
data serialized by pack is
send to the master instance
of the object. On the mas-
ter instance, notifyNewVer-
sion is called from the com-
mand thread to signal the
data availability. The slave
instance generates a unique,
random version. When no
data was serialized, VER-
SION NONE is returned.

The master instance can
sync delta data received from
slaves. When using the ver-
sion generated by the slave
object commit, only the delta
for this version is applied.
When using VERSION NEXT
as the version parameter to
sync, one slave commit is un-
packed. This call may block if
no data is pending. When us-
ing VERSION HEAD all pend-
ing versions are unpacked. The data is synchronized in the order it has been received

95

8. The Collage Network Library

from the slaves. If a specific order is needed, it is the application’s responsibility to
serialize the slave commits accordingly.

Synchronizing slave data on a master instance does not create a new version.
The application has to explicitly mark the deserialized data dirty and call commit
to pack and push the changed data to all slaves.

This approach requires the application to handle or avoid, if possible, the following
situations:

• A slave instance will always receive its own changes when the master re-
commits the slave change.

• A slave instance commits data which does not correspond to the last version
of the master instance.

• Two different slave instances commit changes simultaneously which may result
in conflicts.

• A master instance applies data to an already changed object.

• The master instance commits a new version while a slave instance is modifying
its instance.

Figure 61 depicts one possible communication sequence. Where possible, it is
best to adhere to the following rules:

• Handle the case that a slave instance will receive its own changes again.

• Set the appropriate dirty bits when unpacking slave delta data on the master
object instance to redistribute the changes.

• Write your application code so that only one object instance is modified at
any given time.

• When multiple slave instances have to modify the same object at the same
time, try to modify and serialize disjunct data of the object.

• Before modifying a slave instance, sync it to the head version.

• Write serialization code defensively, e.g.:

– When adding a new child to an object, check that it has not been added
already.

– When removing a child, transmit the child’s identifier instead of its index
for removal.

– Modify a variable by serializing its value (instead of the operation mod-
ifying it), so that the last change will win.

8.4.5. Push Object Distribution

During normal object mapping, the slave object requests the mapping and thereby
pulls its instance data from the master object. Push-based data distribution is
initiated from an object and transmits the data to a set of given nodes. It allows
more efficient initialization of a group of slave instances when multicast is used,
since for all nodes only a single instance data is transmitted.

The transfer is initiated using Object::push. On all nodes given to the push
command, LocalNode::objectPush is called once the data is received. The push
operation prefers multicast connections, that is, objectPush is called on all nodes of
the multicast groups used, even when they are not part of the node list given to the
push command.

96

8. The Collage Network Library

The push command transmits two application-specific variables: a group identifier
and an object type.

The group identifier is intended to be used to identify the push operation. For
example, a set of Equalizer render client nodes requests a scene to be pushed,
transmitting the scene identifier to the master node. The master node collects all
requests and then traverses the given scene graph pushing all scene objects using
this scene identifier as the group identifier. The render client nodes will filter the
received object pushes against their set of pending requests.

The object identifier is used by the receiving nodes to instantiate the correct
object types when they need to be created. In the previous example, the object
identifier would describe the scene graph node type and the render clients would
use a factory to recreate the scene graph.

The LocalNode::objectPush callback is called from the command thread once the
instance data is ready. It receives the aforementioned group identifier and object
type as well as the object identifier and the DataIStream containing the instance
data. The latter is typically used to call Object::applyInstanceData on the newly
created object.

The default implementation of objectPush calls registered push handlers. For
each group identifier, a separate handler function may be registered using LocalN-
ode::registerPushHandler.

A push operation does not establish any master-slave object mapping, that is,
the receiving side will typically use LocalNode::mapObject with VERSION NONE to
establish a slave mapping.

8.4.6. Communication between Object Instances

Objects can send commands to each other using ObjectOCommand, which is de-
rived from OCommand. The object command extends the command by the object
identifier and an object instance identifier. The object output command is created
by Object::send and transmitted when it looses its scope.

Multiple instances of the same object (identifier) can be mapped on the same
node and session simultaneously. Each object instance has a node-unique instance
identifier. When the instance ID is set to EQ INSTANCE ALL (the default value), a
command is dispatch to all object instances registered to the session with the correct
object ID. Multiple object instances per node are used when different threads on
the node need to process a different version of the same object.

LocalNode

*
1

Node

Connection

LocalNode

*
1

Node

OCommand
ICommand

<<send>>

*

1

*

1
<<recv>>

 Connection

Object Object

Object ID

ObjectICommand
ObjectOCommand

byte stream

<<send>> <<recv>>

Dispatcher

DataOStream
DataIStream

CommandFunc

*
1

*
1

Figure 62: Communication between two Objects

When the command is in-
tended for a specific in-
stance, set the corresponding
instance identifier during Ob-
ject::send.

Distributed objects provide
data synchronization func-
tionality, as described above.
Additionally, applications can
send command commands
by creating custom object
commands with a command
greater than CMD OBJECT CUSTOM.

Distributed object commu-
nication relies on the lower
node communication layers,
as shown in Figure 62.

97

8. The Collage Network Library

8.4.7. Usage in Equalizer

The Equalizer client library and server are built on top of the network layer. They
influence the design of it, and serve as a sample implementation on how to use
classes in the co namespace.

Equalizer uses the common base class eq::fabric::Object, which derives from co::Se-
rializable for implementing data distribution between the server, application and ren-
der clients. This class manages common entity data, and is not intended to be sub-
classed directly. The inheritance chain eq::View → eq::fabric::View → eq::fabric::Ob-
ject → co::Serializable → co::Object serves as sample implementation for this process.

Equalizer objects derived from co::Serializable, e.g., eq::View, are registered, mapped
and synchronized by Equalizer. To execute the rendering tasks, the server send the
task command command to the render clients, which dispatch and execute them in
the received order.

8.5. Barrier

The co::Barrier provides a networked barrier primitive. It is an co::Object used by
Equalizer to implement software swap barriers, but it can be used as a generic
barrier in application code.

The barrier uses both the data distribution for synchronizing its data, as well
as custom command commands to implement the barrier logics. A barrier is a
versioned object. Each version can have a different height, and enter requests are
automatically grouped together by version.

8.6. ObjectMap

The co::ObjectMap is a specialized co::Serializable which provides automatic distri-
bution and synchronization of co::Objects. All changed objects are committed when
co::ObjectMap is committed, and sync() on slave instances updates mapped objects
to their respective versions.

The objects on slave ObjectMap instances are mapped explicitly, either by pro-
viding an already constructed instance or using implicit object creation through
the co::ObjectFactory. The factory needs to be supplied upon construction of the
co::ObjectMap and implement creation of the desired object types. Implicitly cre-
ated objects are owned by the object map which limits their lifetime. They are
released upon unmapping caused by deregister(), explicit unmapping or destruc-
tion of the slave instance ObjectMap.

In Sequel, the co::ObjectMap is used to distribute and synchronize all objects to
the rendering frames. The InitData and FrameData objects are implicitely known
and managed by Sequel, and other objects might be used in addition. The com-
mit and synchronization of the object map, and consequently all its objects, is
automatically performed in the correct places, most importantly the commit at the
beginning of the frame, and the sync when accessing an object from the renderer.

98

A. Command Line Options

A. Command Line Options

Equalizer recognizes a number of command line options. To not pollute the ap-
plication namespace for argument, all Equalizer command line options start with
–eq- and all Collage command line options with –co-. The following options are
recognized:

–eq-help shows all available library command line options and their usage.

–eq-client is used to start render client processes. Starts a resident render client
when used without additional arguments, as described in Section 4.3.1. The
server appends an undocumented argument to this option which is used by
the eq::Client to connect to the server and identify itself.

–eq-layout <layoutName> activates all layouts of the given name on all respective
canvases during initialization. This option may be used multiple times.

–eq-gpufilter applies the given regular expression against nodeName:port.device
during autoconfiguration and only uses the matching GPUs.

–eq-modelunit <unitValue> is used for scaling the rendered models in all views.
The model unit defines the size of the model wrt the virtual room unit which
is always in meter. The default unit is 1 (1 meter or EQ M).

–eq-logfile <filename> redirects all Equalizer output to the given file.

–eq-server <connection> provides a connection description when using a separate
server process.

–eq-config <sessionName|filename.eqc> is used to configure an application-local
server, as described in Section 3.1.2.

–eq-config-flags <multiprocess | multiprocess db | ethernet | infiniband |
2D horizontal | 2D vertical | 2D tiles> is used as input for the autocon-
figuration to tweak the configuration generation.

–eq-config-prefixes <CIDR-prefixes> is used as input for the autoconfiguration to
filter network interfaces.

–eq-render-client <filename> provides an alternate executable name for starting
render clients. This option is useful if the client machines use a different
directory layout from the application machine.

–co-listen <connection> configures the local node to listen on the given connec-
tions. The formation of the connection argument is documented in co::Con-
nectionDescription::fromString(). This option may be used multiple times.

B. File Format

The current Equalizer file format is a one-to-one representation of the server’s in-
ternal data structures. Its purpose is intermediate, that is, it will gradually be
replaced by automatic resource detection and configuration. However the core scal-
ability engine will always use a similar structure as currently exposed by the file
format.

The file format represents an ASCII deserialization of the server. Streaming an
eq::server::Server to an lunchbox::Log ostream produces a valid configuration file.
Likewise, loading a configuration file produces an eq::server::Server.

99

B. File Format

The file format uses the same syntactical structure as VRML. If your text editor
supports syntax highlighting and formatting for VRML, you can use this mode for
editing .eqc files.

The configuration file consist of an optional global section and a server configu-
ration. The global section defines default values for various attributes. The server
section represents an eq::server::Server.

B.1. File Format Version

B.2. Global Section

The global section defines default values for attributes used by the individual entities
in the server section. The naming convention for attributes is:

EQ <ENTITY> <DATATYPE>ATTR<ATTR NAME>

The entity is the capitalized name of the corresponding section later in the con-
figuration file: connection, config, pipe, window, channel or compound. The con-
nection is used by the server and nodes.

The datatype is one capital letter for the type of the attribute’s value: S for
strings, C for a character, I for an integer and F for floating-point values. Enumera-
tion values are handled as integers. Strings have always to be surrounded by double
quotes ’”’. A character has to be surrounded by single quotes ’’’.

The attribute name is the capitalized name of the entities attribute, as discussed
in the following sections.

Global attribute values have useful default parameters, which can be overridden
with an environment variable of the same name. For enumeration values the corre-
sponding integer value has to be used. The global values in the config file override
environment variables, and are in turn overridden by the corresponding attributes
sections of the specific entities.

The globals section starts with the token global and an open curly brace ’{’, and
is terminated with a closing curly brace ’}’. Within the braces, globals are set using
the attribute’s name followed by its value. The following attributes are available:

Name EQ CONNECTION SATTR HOSTNAME
Value string
Default ”localhost”
Details The hostname or IP address used to connect the server or node.

When used for the server, the listening port of the server is bound to
this address. When used for a node, the server first tries to connect to
the render client node using this hostname, and then tries to launch
the render client executable on this host.

See also EQ NODE SATTR LAUNCH COMMAND
EQ CONNECTION IATTR PORT EQ CONNECTION IATTR TYPE

Name EQ CONNECTION IATTR TYPE
Value TCPIP | SDP | RSP | PIPE [Win32 only]
Default TCPIP
Details The protocol for connections. SDP programmatically selects the

socket direct protocol (AF INET SDP) provided by most InfiniBand
protocol stacks, TCPIP uses normal TCP sockets (AF INET). RSP
provides reliable UDP multicast. PIPE uses a named pipe to com-
municate between two processes on the same machine.

100

B. File Format

Name EQ CONNECTION IATTR PORT
Value unsigned
Default 0
Details The listening port used by the server or node. For nodes, the port

can be used to contact prestarted, resident render client nodes or to
use a specific port for the node. If 0 is specified, a random port is
chosen. Note that a server with no connections automatically creates
a default connection using the server’s default port.

Name EQ CONNECTION IATTR FILENAME
Value string
Default none
Details The filename of the named pipe used by the server or node. The

filename has to be unique on the local host.

Name EQ CONFIG IATTR ROBUSTNESS
Value ON | OFF
Default ON
Details Handle initialization failures robustly by deactivating the failed re-

sources but keeping the configuration running.

Name EQ CONFIG FATTR EYE BASE
Value float
Default 0.05
Details The default distance in meters between the left and the right eye,

i.e., the eye separation. The eye base influences the frustum during
stereo rendering. See Section 7.2.6 for details.

See also EQ WINDOW IATTR HINT STEREO
EQ COMPOUND IATTR STEREO MODE
EQ CONFIG FATTR FOCUS DISTANCE
EQ CONFIG IATTR FOCUS MODE

Name EQ CONFIG FATTR FOCUS DISTANCE
Value float
Default 1.0
Details The default distance in meters to the focal plane. The focus distance

and mode influence the calculation of stereo frusta. See Section 7.2.6
for details.

See also EQ CONFIG IATTR FOCUS MODE
EQ CONFIG FATTR EYE BASE

Name EQ CONFIG IATTR FOCUS MODE
Value fixed |relative to origin |relative to observer
Default fixed
Details The mode how to use the focus distance. The focus mode and dis-

tance influence the calculation of stereo frusta. See Section 7.2.6 for
details.

See also EQ CONFIG IATTR FOCUS DISTANCE
EQ CONFIG FATTR EYE BASE

101

B. File Format

Name EQ NODE SATTR LAUNCH COMMAND
Value string
Default ssh -n %h %c >& %h.%n.log [POSIX]

ssh -n %h %c [WIN32]
Details The command used by the server to auto-launch nodes which could

not be connected. The launch command is executed from a pro-
cess forked from the server process. The % tokens are replaced by
the server at runtime with concrete data: %h is replaced by the
hostname, %c by the render client command to launch, including
command line arguments and %n by a node-unique identifier. Each
command line argument is surrounded by launch command quotes.

See also EQ NODE SATTR LAUNCH COMMAND QUOTE
EQ NODE IATTR LAUNCH TIMEOUT

Name EQ NODE CATTR LAUNCH COMMAND QUOTE
Value character
Default ’ [POSIX]

” [WIN32]
Details The server uses command line arguments to launch render client

nodes correctly. Certain launch commands or shells use different
conventions to separate command line arguments. These arguments
might contain white spaces, and therefore have to be surrounded by
quotes to identify their borders. This option is mostly used on Win-
dows.

Name EQ NODE IATTR LAUNCH TIMEOUT
Value unsigned
Default 60’000 (1 minute)
Details Defines the timeout in milliseconds to wait for an auto-launched node.

If the render client process did not contact the server within that time,
the node is considered to be unreachable and the initialization of the
configuration fails.

Name EQ NODE IATTR THREAD MODEL
Value ASYNC | DRAW SYNC | LOCAL SYNC
Default DRAW SYNC
Details The threading model for node synchronization. See Section 7.2.3 for

details.

Name EQ PIPE IATTR HINT THREAD
Value OFF | ON
Default ON
Details Determines if all task methods for a pipe and its children are ex-

ecuted from a separate operating system thread (default) or from
the node main thread. Non-threaded pipes have certain performance
limitations and should only be used where necessary.

102

B. File Format

Name EQ PIPE IATTR HINT AFFINITY
Value OFF | AUTO | CORE unsigned | SOCKET unsigned
Default AUTO
Details Determines how all pipe threads are bound to processing cores. When

set to OFF, threads are unbound and will be scheduled by the op-
eration system on any core. If set to AUTO, threads are bound to
all cores of the processor which is closest to the GPU used by the
pipe, that is, which have the lowest latency to access the GPU de-
vice. This feature requires that Lunchbox and Equalizer have been
compiled with the hwloc library version 1.5 or later. When set to
CORE, the pipe threads will be bound to the given core. When set
to SOCKET, the pipe threads will be bound to all cores of the given
processor (socket). The CORE and SOCKET settings require that
Lunchbox and Equalizer have been compiled with the hwloc library
version 1.2 or later.

Name EQ PIPE IATTR HINT CUDA GL INTEROP
Value OFF | ON
Default OFF
Details Determines if the pipe thread enables interoperability between CUDA

and OpenGL or not. When set to ON, the CUDA device is configured
on which the thread executes the CUDA device code. If no graphics
adapter is specified in the config file, the one providing the highest
compute performances on the particular node is chosen. When set to
OFF, no CUDA device is configured at all.

Name EQ WINDOW IATTR HINT STEREO
Value OFF | ON | AUTO
Default AUTO
Details Determines if the window selects a quad-buffered stereo visual.

When set to AUTO, the default window initialization methods try
to allocate a stereo visual for windows, but fall back to a mono visual
if allocation fails. For pbuffers, AUTO selects a mono visual.

See also EQ COMPOUND IATTR STEREO MODE

Name EQ WINDOW IATTR HINT DOUBLEBUFFER
Value OFF | ON | AUTO
Default AUTO
Details Determines if the window selects a double-buffered stereo visual.

When set to AUTO, the default window initialization methods try
to allocate a double-buffered visual for windows, but fall back to a
single-buffered visual if allocation fails. For pbuffers, AUTO selects
a single-buffered visual.

Name EQ WINDOW IATTR HINT DECORATION
Value OFF | ON
Default ON
Details When set to OFF, window borders and other decorations are disabled,

and typically the window cannot be moved or resized. This option is
useful for source windows during decomposition. The implementation
is window-system specific.

Name EQ WINDOW IATTR HINT FULLSCREEN
Value OFF | ON
Default OFF
Details When set to ON, the window displays in fullscreen. This option

forces window decorations to be OFF. The implementation is window-
system specific.

103

B. File Format

Name EQ WINDOW IATTR HINT SWAPSYNC
Value OFF | ON
Default ON
Details Determines if the buffer swap is synchronized with the vertical retrace

of the display. This option is currently not implemented for GLX.
For WGL, the WGL EXT swap control extension is required. For
optimal performance, set swap synchronization to OFF for source-
only windows. This option has no effect on single-buffered windows.

Name EQ WINDOW IATTR HINT DRAWABLE
Value window | pbuffer | FBO | OFF
Default window
Details Selects the window’s drawable type. A window is an on-screen, win-

dow system-dependent window with a full-window OpenGL draw-
able. Pbuffers are off-screen drawables created using window system-
dependent pbuffer APIs. FBO are off-screen frame buffer objects. A
disabled drawable creates a system window without a frame buffer
for context sharing, e.g., for asynchronous operations in a separate
thread. To calculate the pbuffer or FBO size on unconnected de-
vices, a pipe viewport size of 4096x4096 is assumed, unless specified
otherwise using the pipe’s viewport parameter.

Name EQ WINDOW IATTR HINT STATISTICS
Value OFF | FASTEST [ON] | NICEST
Default FASTEST [Release Build]

NICEST [Debug Build]
Details Determines how statistics are gathered. OpenGL buffers commands,

which causes the rendering to be executed at an arbitrary point in
time. Nicest statistics gathering executes a Window::finish, which
calls by default glFinish, in order to accurately account the rendering
operations to the sampled task method. However, calling glFinish
has a performance impact. Therefore, the fastest statistics gather-
ing samples the task statistics directly, without finishing the OpenGL
commands first. Some operations, e.g., frame buffer readback, inher-
ently finish all previous OpenGL commands.

See also EQ NODE IATTR HINT STATISTICS
EQ CHANNEL IATTR HINT STATISTICS

Name EQ WINDOW IATTR HINT GRAB POINTER
Value OFF | ON
Default ON
Details Enables grabbing the mouse pointer outside of the window during a

drag operation.

Name EQ WINDOW IATTR PLANES COLOR
Value unsigned | RGBA16F | RGBA32F
Default AUTO
Details Determines the number of color planes for the window. The inter-

pretation of this value is window system-specific, as some window
systems select a visual with the closest match to this value, and some
select a visual with at least the number of color planes specified.
RGBA16F and RGBA32F select floating point framebuffers with 16
or 32 bit precision per component, respectively. AUTO selects a vi-
sual with a reasonable quality, typically eight bits per color.

104

B. File Format

Name EQ WINDOW IATTR PLANES ALPHA
Value unsigned
Default UNDEFINED
Details Determines the number of alpha planes for the window. The inter-

pretation of this value is window system-specific, as some window
systems select a visual with the closest match to this value, and some
select a visual with at least the number of alpha planes specified. By
default no alpha planes are requested.

Name EQ WINDOW IATTR PLANES DEPTH
Value unsigned
Default AUTO
Details Determines the precision of the depth buffer. The interpretation of

this value is window system-specific, as some window systems select
a visual with the closest match to this value, and some select a visual
with at least the number of depth bits specified. AUTO select a
visual with a reasonable depth precision, typically 24 bits.

Name EQ WINDOW IATTR PLANES STENCIL
Value unsigned
Default AUTO
Details Determines the number of stencil planes for the window. The in-

terpretation of this value is window system-specific, as some win-
dow systems select a visual with the closest match to this value, and
some select a visual with at least the number of stencil planes spec-
ified. AUTO tries to select a visual with at least one stencil plane,
but falls back to no stencil planes if allocation fails. Note that for
depth-compositing and pixel-compositing at least one stencil plane is
needed.

Name EQ WINDOW IATTR PLANES ACCUM
Value unsigned
Default UNDEFINED
Details Determines the number of color accumulation buffer planes for the

window. The interpretation of this value is window system-specific,
as some window systems select a visual with the closest match to this
value, and some select a visual with at least the number of accumu-
lation buffer planes specified.

Name EQ WINDOW IATTR PLANES ACCUM ALPHA
Value unsigned
Default UNDEFINED
Details Determines the number of alpha accumulation buffer planes for the

window. The interpretation of this value is window system-specific,
as some window systems select a visual with the closest match to this
value, and some select a visual with at least the number of accumula-
tion buffer planes specified. If this attribute is undefined, the value of
EQ WINDOW IATTR PLANES ACCUM is used to determine the
number of alpha accumulation buffer planes.

Name EQ WINDOW IATTR PLANES SAMPLES
Value unsigned
Default UNDEFINED
Details Determines the number of samples used for multisampling.

105

B. File Format

Name EQ CHANNEL IATTR HINT STATISTICS
Value OFF | FASTEST [ON] | NICEST
Default FASTEST [Release Build]

NICEST [Debug Build]
Details See EQ WINDOW IATTR HINT STATISTICS.
See also EQ NODE IATTR HINT STATISTICS

EQ WINDOW IATTR HINT STATISTICS

Name EQ COMPOUND IATTR STEREO MODE
Value AUTO | QUAD | ANAGLYPH | PASSIVE
Default AUTO
Details Selects the algorithm used for stereo rendering. QUAD-buffered

stereo uses the left and right buffers of a stereo window (active stereo).
Anaglyphic stereo uses glColorMask to mask colors for individual eye
passes, used in conjunction with colored glasses. PASSIVE stereo
never selects a stereo buffer of a quad-buffered drawable. AUTO se-
lects PASSIVE if the left or right eye pass is not used, QUAD if the
drawable is capable of active stereo rendering, and ANAGLYPH in
all other cases.

Name EQ COMPOUND IATTR STEREO ANAGLYPH LEFT MASK
Value [RED GREEN BLUE]
Default [RED]
Details Select the color mask for the left eye pass during anaglyphic stereo

rendering.

Name EQ COMPOUND IATTR STEREO ANAGLYPH RIGHT MASK
Value [RED GREEN BLUE]
Default [GREEN BLUE]
Details Select the color mask for the right eye pass during anaglyphic stereo

rendering.

B.3. Server Section

The server section consists of connection description parameters for the server lis-
tening sockets and a number of configurations for this server. Currently only the
first configuration is used.

B.3.1. Connection Description

A connection description defines the network parameters of an Equalizer process.
Currently TCP/IP, SDP, RDMA, RSP and PIPE connection types are supported.
TCP/IP creates a TCP socket. SDP is very similar, except that the address family
AF INET SDP instead of AF INET is used to enforce a SDP connection. RDMA
implements native connections over the InfiniBand verbs protocol on Linux and
Windows. RSP provides reliable multicast over UDP. PIPE uses a named pipe for
fast interprocess communication on Windows.

RDMA connections provide the fastest implementation for InfiniBand fabrics.
SDP is slower than RDMA and faster than IP over InfiniBand. Note that you can
also use the transparent mode provided by most InfiniBand implementations to use
SDP with TCP connections by preloading the SDP shared library.

Furthermore, a port for the socket can be specified. When no port is specified
for the server, the default port 4242 (+UID on Posix systems) is used. When no
port is specified for a node, a random port will be chosen by the operating system.
For prelaunched render clients, a port has to be specified for the server to find the
client node.

106

B. File Format

The hostname is the IP address or resolvable host name. A server or node may
have multiple connection descriptions, for example to use a named pipe for local
communications and TCP/IP for remote nodes.

The interface is the IP address or resolvable host name of the adapter to which
multicast traffic is send.

A server listens on all provided connection descriptions. If no hostname is speci-
fied for a server connection description, it listens to INADDR ANY, and is therefore
reachable on all network interfaces. If the server’s hostname is specified, the lis-
tening socket is bound only to this address. If any of the given hostnames is not
resolvable, or any port cannot be used, server initialization will fail.

For a node, all connection descriptions are used while trying to establish a con-
nection to the node. When auto-launched by the server, all connection descriptions
of the node are passed to the launched node process, which will cause it to bind to
all provided descriptions.

s e r v e r
{

connect ion # 0−n times , l i s t e n i n g connect i ons o f the s e r v e r
{

type TCPIP | SDP | RDMA | PIPE | RSP
port unsigned # TCPIP, SDP
f i l ename s t r i n g # PIPE
hostname s t r i n g
i n t e r f a c e s t r i n g # RSP

}

B.3.2. Config Section

A configuration has a number of parameters, nodes, observers, layouts, canvases
and compounds.

The nodes and their children describe the rendering resources in a natural, hierar-
chical way. Observers, layouts and canvases describe the properties of the physical
projection system. Compounds use rendering resources (channels) to execute ren-
dering tasks.

For an introduction to writing configurations and the concepts of the configuration
entities please refer to Section 3.

The latency of a config defines the maximum number of frames the slowest op-
eration may fall behind the application thread. A latency of 0 synchronizes all
rendering tasks started by Config::startFrame in Config::finishFrame. A latency of
one synchronizes all rendering tasks started one frame ago in finishFrame.

For a description of config attributes please refer to Section B.2.

c o n f i g # 1−n times , c u r r e n t l y only the f i r s t one i s used by the s e r v e r
{

l a t ency int # Number o f frames nodes may f a l l behind app , default 1
a t t r i b u t e s
{

eye base f loat # di s t anc e between l e f t and r i g h t eye
f o c u s d i s t a n c e f loat
focus mode f i x e d | r e l a t i v e t o o r i g i n | r e l a t i v e t o o b s e r v e r
robus tne s s OFF | ON # t o l e r a t e r e s ou r c e f a i l u r e s (i n i t only)

}

B.3.3. Node Section

A node represents a machine in the cluster, and is one process. It has a name, a
hostname, a number of connection descriptions and at least one pipe. The name
of the node can be used for debugging, it has no influence on the execution of

107

B. File Format

Equalizer. The host is used to automatically launch remote render clients. For a
description of node and connection attributes please refer to Section B.2.

(node | appNode) # 1−n times , a system in the c l u s t e r
0 |1 appNode : launches render thread with in app proce s s

{
name s t r i n g
host s t r i n g # Used to auto−launch render nodes
connect ion # 0−n times , p o s s i b l e connec t i ons to this node
{

type TCPIP | SDP | PIPE
port unsigned
hostname s t r i n g
f i l ename s t r i n g

}
a t t r i b u t e s
{

thread model ASYNC | DRAW SYNC | LOCAL SYNC
launch command s t r i n g # render c l i e n t launch command
launch command quote ’ cha rac t e r ’ # command argument quote char
l aunch t imeout unsigned # timeout in m i l l i s e c o n d s

}

B.3.4. Pipe Section

A pipe represents a graphics card (GPU), and is one execution thread. It has a
name, GPU settings and attributes. The name of a pipe can be used for debugging,
it has no influence on the execution of Equalizer.

The GPU is identified by two parameters, a port and a device. The port is only
used for the GLX window system, and identifies the port number of the X server,
i.e., the number after the colon in the DISPLAY description (’:0.1’).

The device identifies the graphics adapter. For the GLX window system this
is the screen number, i.e., the number after the dot in the DISPLAY description
(:0.1). The OpenGL output is restricted by glX to the GPU attached to selected
screen.

For the AGL window system, the device selects the nth display in the list of
online displays. The OpenGL output is optimized for the selected display, but not
restricted to the attached GPU.

For the WGL window system, the device selects the nth GPU in the system.
The GPU can be offline, in this case only pbuffer windows can be used. To restrict
the OpenGL output to the GPU, the WGL NV gpu affinity extension is used when
available. If the extension is not present, the window is opened on the nth monitor,
but OpenGL commands may be sent to a different or all GPUs, depending on the
driver implementation.

The viewport of the pipe can be used to override the pipe resolution. The viewport
is defined in pixels. The x and y parameter of the viewport are currently ignored.
The default viewport is automatically detected. For offline GPUs, a default of
4096x4096 is used.

For a description of pipe attributes please refer to Section B.2.

pipe # 1−n times
{

name s t r i n g
port unsigned # X s e r v e r number or i gnored
dev i ce unsigned # graph i c s adapter number
viewport [v iewport] # default : autodetec t
a t t r i b u t e s
{

h in t th r ead OFF | ON # default ON
h i n t a f f i n i t y AUTO | OFF | CORE unsigned | SOCKET unsigned

}

108

B. File Format

B.3.5. Window Section

A window represents an OpenGL drawable and holds an OpenGL context. It has a
name, a viewport and attributes. The name of a window can be used for debugging,
it has no influence on the execution of Equalizer, other then it being used as the
window title by the default window creation methods.

The viewport of the window is relative to the pipe. It can be specified in relative
or absolute coordinates. Relative coordinates are normalized coordinates relative
to the pipe, e.g., a viewport of [0.25 0.25 0.5 0.5] creates a window in the middle
of the screen, using 50% of the pipe’s size. Absolute coordinates are integer pixel
values, e.g., a viewport of [50 50 800 600] creates a window 50 pixels from the
upper-left corner, sized 800x600 pixels, regardless of the pipe’s size. The default
viewport is [0 0 1 1], i.e., a full-screen window.

For a description of window attributes please refer to Section B.2.

window # 1−n times
{

name s t r i n g
viewport [v iewport] # wrt pipe , default f u l l s c r e en

a t t r i b u t e s
{

h i n t s t e r e o OFF | ON | AUTO
h i n t d o u b l e b u f f e r OFF | ON | AUTO
h i n t d e c o r a t i o n OFF | ON
h i n t f u l l s c r e e n OFF | ON
hint swapsync OFF | ON # AGL, WGL only
h int drawable window | pbu f f e r | FBO | OFF
h i n t s t a t i s t i c s OFF | FASTEST [ON] | NICEST
h i n t g r a b p o i n t e r OFF | [ON]
p l a n e s c o l o r unsigned | RGBA16F | RGBA32F
p lane s a lpha unsigned
planes depth unsigned
p l a n e s s t e n c i l unsigned
planes accum unsigned
planes accum alpha unsigned
p lanes sample s unsigned

}

B.3.6. Channel Section

A channel is a two-dimensional area within a window. It has a name, viewport and
attributes. The name of the channel is used to identify the channel in the respective
segments or compounds. It should be unique within the config.

Output channels are referenced in their respective segments. Source channels are
directly referenced by their respective source compounds.

The viewport of the channel is relative to the window. As for windows, it can be
specified in relative or absolute coordinates. The default viewport is [0 0 1 1], i.e.,
fully covering its window.

The channel can have an alternate drawable description. Currently, the win-
dow’s framebuffer can be replaced by framebuffer objects bound to the window’s
OpenGL context. The window’s default framebuffer can be partially overwritten
with framebuffer objects.

For a description of channel attributes please refer to Section B.2.

channel # 1−n times
{

name s t r i n g
viewport [v iewport] #wrt window , default f u l l window
drawable [FBO COLOR FBO DEPTH FBO STENCIL]
a t t r i b u t e s

109

B. File Format

{
h i n t s t a t i s t i c s OFF | FASTEST [ON] | NICEST

}
}

B.3.7. Observer Section

An observer represents a tracked entity, i.e, one user. It has a name, eye separation,
focal plane parameters and tracking device settings. The name of an observer can
be used for debugging, it has no influence on the execution of Equalizer. It can be
used to reference the observer in views, in which case the name should be unique.
Not all views have to be tracked by an observer. The focal plane parameters are
described in Section 7.2.6. The OpenCV camera identifies the camere device index
to be used for tracking on the application node. The VRPN tracker identifies the
VRPN device tracker device name for the given observer.

obse rve r # 0 . . . n t imes
{

name s t r i n g
eye base f loat # convenience
e y e l e f t [f loat f loat f loat]
e y e cyc l op [f loat f loat f loat]
e y e r i g h t [f loat f loat f loat]
f o c u s d i s t a n c e f loat
focus mode f i x e d | r e l a t i v e t o o r i g i n | r e l a t i v e t o o b s e r v e r
opencv camera [OFF] | AUTO | ON | i n t e g e r # head t r a c k e r
v rpn t racke r s t r i n g # head t r a c k e r dev i c e name

}

B.3.8. Layout Section

A layout represents a set of logical views on one or more canvases. It has a name
and child views. The name of a layout can be used for debugging, it has no influence
on the execution of Equalizer. It can be used to reference the layout, in which case
the name should be unique.

A layout is applied to a canvas. If no layout is applied to a canvas, nothing is
rendered on this canvas, i.e, the canvas is inactive.

The layout assignment can be changed at runtime by the application. The in-
tersection between views and segments defines which output (sub-)channels are
available. These output channels are typically used as destination channels in a
compound. They are automatically created during configuration loading or cre-
ation.

l ayout # 0 . . . n t imes
{

name s t r i n g
view # 1 . . . n t imes

B.3.9. View Section

A view represents a 2D area on a canvas. It has a name, viewport, observer and
frustum. The name of a view can be used for debugging, it has no influence on
the execution of Equalizer. It can be used to reference the view, in which case the
name should be unique. The viewport specifies which 2D area of the parent layout
is covered by this view in normalized coordinates.

A view can have a frustum description. The view’s frustum overrides frusta
specified at the canvas or segment level. This is typically used for non-physically
correct rendering, e.g., to compare two models side-by-side. If the view does not

110

B. File Format

specify a frustum, the corresponding destination channels will use the sub-frustum
resulting from the view/segment intersection.

A view has a stereo mode, which defines if the corresponding destination channel
update the cyclop or left and right eye. The stereo mode can be changed at runtime
by the application.

A view is a view on the application’s model, in the sense used by the Model-
View-Controller pattern. It can be a scene, viewing mode, viewing position, or any
other representation of the application’s data.

view # 1 . . . n t imes
{

name s t r i n g
obse rve r observer−r e f
v iewport [v iewport]
mode MONO | STEREO

wal l # frustum d e s c r i p t i o n
{

bot tom l e f t [f loat f loat f loat]
bottom r ight [f loat f loat f loat]
t o p l e f t [f loat f loat f loat]
type f i x e d | HMD

}
p r o j e c t i o n # a l t e r n a t e frustum d e s c r i p t i o n , l a s t one wins
{

o r i g i n [f loat f loat f loat]
d i s t anc e f loat
fov [f loat f loat]
hpr [f loat f loat f loat]

}
}

B.3.10. Canvas Section

A canvas represents a logical projection surface of multiple segments. It has a name,
frustum, layouts, and segments. The name of a canvas can be used for debugging,
it has no influence on the execution of Equalizer. It can be used to reference the
canvas, in which case the name should be unique.

Each canvas consists of one or more segments. Segments can be planar or non-
planar to each other, and can overlap or have gaps between each other. A canvas
can define a frustum, which will create default planar sub-frusta for its segments.

The layouts referenced by the canvas can be activated by the application at
runtime. One layout can be referenced by multiple canvases. The first layout is
the layout active by default, unless the command line option –eq-layout was used to
select another default layout.

A canvas may have a swap barrier, which becomes the default swap barrier for
all its subsequent segments. A swap barrier is used to synchronize the output of
multiple windows. For software swap synchronization, all windows using a swap
barrier of the same name are synchronized. Hardware swap synchronization is used
when a NV group is specified. All windows using the same NV group on a single
system are synchronized with each other using hardware synchronization. All groups
using the same NV barrier across systems are synchronized with each other using
hardware synchronization. When using hardware synchronization, the barrier name
is ignored.

canvas # 0 . . . n t imes
{

name s t r i n g
layout layout−r e f | OFF # 1 . . . n t imes

111

B. File Format

wal l
{

bot tom l e f t [f loat f loat f loat]
bottom r ight [f loat f loat f loat]
t o p l e f t [f loat f loat f loat]
type f i x e d | HMD

}
p r o j e c t i o n
{

o r i g i n [f loat f loat f loat]
d i s t anc e f loat
fov [f loat f loat]
hpr [f loat f loat f loat]

}
swapbarr i e r # default swap b a r r i e r for a l l segments o f canvas
{

name s t r i n g
NV group OFF | ON | unsigned
NV barr ier OFF | ON | unsigned

}

B.3.11. Segment Section

A segment represents a single display, i.e., a projector or monitor. It references a
channel, has a name, viewport, frustum and potentially a swap barrier. The name
of a segment can be used for debugging, it has no influence on the execution of
Equalizer. It can be used to reference the segment, in which case the name should
be unique.

The channel referenced by the segment defines the output channel. The viewport
of the segment defines the 2D area covered by the channel on the canvas. Segments
can overlap each other, e.g., when edge-blended projectors or passive stereo is used.
The intersections of a segment with all views of all layouts create destination chan-
nels for rendering. The destination channels are copies of the segment’s output
channel with a viewport smaller or equal to the output channel viewport.

The segment eyes define which eyes are displayed by this segment. For active
stereo outputs the default setting ’all’ is normally used, while passive stereo seg-
ments define the left or right eye, and potentially the cyclop eye.

A segment can define a frustum, in which case it overrides the default frustum
calculated from the canvas frustum and segment viewport. A segment can have a
swap barrier, which is used as the swap barrier on the destination compounds of all
its destination channels.

segment # 1 . . . n t imes
{

channel s t r i n g
name s t r i n g
viewport [v iewport]
eye [CYCLOP LEFT RIGHT] # eye passes , default a l l

wa l l # frustum d e s c r i p t i o n
{

bot tom l e f t [f loat f loat f loat]
bottom r ight [f loat f loat f loat]
t o p l e f t [f loat f loat f loat]
type f i x e d | HMD

}
p r o j e c t i o n # a l t e r n a t e frustum d e s c r i p t i o n , l a s t one wins
{

o r i g i n [f loat f loat f loat]
d i s t anc e f loat
fov [f loat f loat]
hpr [f loat f loat f loat]

112

B. File Format

}
swapbarr i e r { . . . } # s e t as b a r r i e r on a l l des t compounds

}

B.3.12. Compound Section

Compounds are the basic data structure describing the rendering setup. They use
channels for rendering. Please refer to Section 3.11 for a description of compound
operation logics.

The name of the compound is used for the default names of swap barriers and
output frames.

A channel reference is either the name of the channel in the resource section
if no canvases are used, or the destination channel reference of a view/segment
intersection. Channel segment references are delimited by braces, in which the
canvas, segment, layout and view describing the channel are named, i.e, ’channel (
canvas ”PowerWall” segment 0 layout ”Simple” view 0)’.

Compound tasks describe the operations the compound executes. The default is
all tasks for compounds with no children (leaf compounds) and CLEAR READBACK
ASSEMBLE for all others. A leaf compound using the same channel as its parent
compound does not have a default clear task, since this has been executed by the
parent already. The readback and assemble tasks are only executed if the compound
has output frames or input frames, respectively. Tasks are not inherited by the
children of a compound.

The buffer defines the default frame buffer attachments read back by output
frames. Output frames may change the buffer attachments used.

The eye attribute defines which eyes are handled by this compound. This at-
tribute can be used to write one compound for monoscopic rendering and another
for stereoscopic rendering, as illustrated in Figure 47.

The viewport restricts the rendering to the area relative to the parent compound.
The range restricts the database range, relative to the parent. The pixel setting
selects the pixel decomposition kernel, relative to the parent. The subpixel defines
the jittering applied to the frustum, relative to the parent. The zoom scales the
parent pixel viewport resolution. The DPlex period defines that 1

period frames are
rendered, and the phase defines when in the period the rendering starts. All these
attributes are inherited by the children of a compound. Viewport, range, pixel and
period parameters are cumulative.

Equalizers are used to automatically optimize the decomposition. A 2D, hori-
zontal or vertical load equalizer adjusts the viewport of all direct children of the
compound each frame. A DB load equalizer adjusts the range of all direct children.
A dynamic framerate (DFR) equalizer adjusts the zoom for a constant framerate. A
framerate equalizer smoothens the framerate of the compound’s window to produce
a steady output framerate, typically for DPlex compounds. A monitor equalizer
adjusts the output image zoom to monitor another canvas. A tile equalizer auto-
matically sets up tile queues between the destination and all source channels.

For a description of compound attributes please refer to Section B.2.
A wall or projection description is used to define the view frustum of the com-

pound. The frustum is normally inherited from the view or segment. The frustum
is inherited and typically only defined on the topmost compound. The last specified
frustum description is used. Sizes are specified in meters. Figure 14 illustrates the
frustum parameters. Setting a frustum on a compound is discouraged, a proper
view and segment description should be used instead. View frusta override segment
frusta which override compound frusta.

Output frames transport frame buffer contents to input frames of the same name.
If the compound has a name, the default frame name is frame.compoundName,

113

B. File Format

otherwise the default name is frame.channelName. The frame buffer attachments
to read back are inherited from the compound, but can be overridden by output
frames. Frames of type texture copy the framebuffer contents to a texture, and can
only be used to composite frames between windows of the same pipe.

compound # 1−n times
{

name s t r i n g
channel channel−r e f # see below

task [CLEAR DRAW READBACK ASSEMBLE] # CULL l a t e r
b u f f e r [COLOR DEPTH] # default COLOR

eye [CYCLOP LEFT RIGHT] # eyes handled , default a l l

v iewport [v iewport] # wrt parent compound , sort− f i r s t
range [f loat f loat] # DB−range for sor t−l a s t
p i x e l [int int int int] # p i x e l decomposit ion (x y w h)
subp ixe l [int int] # subp ixe l decomposit ion (index s i z e)
zoom [f loat f loat] # up/ downscale o f parent pvp
per iod int # DPlex per iod
phase int # DPlex phase

v i e w e q u a l i z e r {} # a s s i g n r e s o u r c e s to c h i l d l o a d e q u a l i z e r s
l o a d e q u a l i z e r # adapt 2D t i l i n g or DB range o f c h i l d r e n
{

mode 2D | DB | VERTICAL | HORIZONTAL
damping f loat # 0 : no damping , 1 : no changes
boundary [x y] # 2D t i l e boundary
boundary f loat # DB range g r a n u l a r i t y
r e s i s t a n c e [x y] # 2D t i l e p i x e l d e l t a
r e s i s t a n c e f loat # DB range d e l t a
a s s e m b l e o n l y l i m i t f loat # l i m i t for using dest as s r c

}
DFR equalizer # adapt ZOOM to ach ieve constant f ramerate
{

f ramerate f loat # t a r g e t f ramerate
damping f loat # 0 : no damping , 1 : no changes

}
f r a m e r a t e e q u a l i z e r {} # smoothen window swapbuf fer r a t e (DPlex)
m o n i t o r e q u a l i z e r {} # s e t frame zoom when monitor ing other views
t i l e e q u a l i z e r
{

name s t r i n g
s i z e [int int] # t i l e s i z e

}

a t t r i b u t e s
{

stereo mode AUTO | QUAD | ANAGLYPH | PASSIVE # default AUTO
s t e r e o a n a g l y p h l e f t m a s k [RED GREEN BLUE] # default red
s t e r eo anag lyph r i gh t mask [RED GREEN BLUE] # df green blue

}

wal l # frustum d e s c r i p t i o n , deprecated by view and segment frustum
{

bot tom l e f t [f loat f loat f loat]
bottom r ight [f loat f loat f loat]
t o p l e f t [f loat f loat f loat]
type f i x e d | HMD

}
p r o j e c t i o n # a l t e r n a t e frustum d e s c r i p t i o n , l a s t one wins
{

o r i g i n [f loat f loat f loat]
d i s t anc e f loat
fov [f loat f loat]
hpr [f loat f loat f loat]

114

B. File Format

}

swapbarr i e r { . . . } # compounds with the same name sync swap

ch i ld−compounds

outputframe
{

name s t r i n g
b u f f e r [COLOR DEPTH]
type t ex ture | memory

}
inputframe
{

name s t r i n g # correspond ing output frame
}
o u t p u t t i l e s
{

name s t r i n g
s i z e [int int] # t i l e s i z e

}
i n p u t t i l e s
{

name s t r i n g # correspond ing output t i l e s
}

}

channel−r e f : ’ s t r i n g ’ | ’ (’ channel−segment−r e f ’) ’
channel−segment−r e f : (canvas−r e f) segment−r e f (layout−r e f) view−r e f

115

++

2

3
1
2

1

3

+
+

+

+

	User Guide
	Introduction
	Parallel Rendering
	Installing Equalizer and Running eqPly
	Equalizer Processes
	Server
	Application
	Render Clients
	Administration Programs

	Scalable Rendering
	2D or Sort-First Compounds
	DB or Sort-Last Compounds
	Stereo Compounds
	DPlex Compounds
	Tile Compounds
	Pixel Compounds
	Subpixel Compounds
	Automatic Runtime Adjustments

	Configuring Equalizer Clusters
	Auto-Configuration
	Hardware Service Discovery
	Usage

	Preparation
	Summary
	Node
	Pipe
	Window
	Channel
	Canvases
	Segments
	Swap and Frame Synchronization

	Layouts
	Views

	Observers
	Compounds
	Writing Compounds
	Compound Channels
	Frustum
	Compound Classification
	Tasks
	Decomposition - Attributes
	Recomposition - Frames
	Adjustments - Equalizers

	Setting up a Visualization Cluster
	Name Resolution
	Server
	Starting Render Clients
	Prelaunched Render Clients
	Auto-launched Render Clients

	Debugging

	Programming Guide
	Programming Interface
	Hello, World!
	Namespaces
	Task Methods
	Execution Model and Thread Safety

	The Sequel Simple Equalizer API
	main Function
	Application
	Renderer

	The Equalizer Parallel Rendering Framework
	The eqPly Polygonal Renderer
	main Function
	Application
	Distributed Objects
	Config
	Node
	Pipe
	Window
	Channel

	Advanced Features
	Event Handling
	Error Handling
	Thread Synchronization
	OpenGL Extension Handling
	Window System Integration
	Stereo and Immersive Rendering
	Layout API
	Region of Interest
	Image Compositing for Scalable Rendering
	Subpixel Processing
	Statistics
	GPU Computing with CUDA

	The Collage Network Library
	Connections
	Command Handling
	Nodes
	Zeroconf Discovery
	Communication between Nodes

	Objects
	Common Usage for Parallel Rendering
	Change Handling and Serialization
	co::Serializable
	Slave Object Commit
	Push Object Distribution
	Communication between Object Instances
	Usage in Equalizer

	Barrier
	ObjectMap

	Command Line Options
	File Format
	File Format Version
	Global Section
	Server Section
	Connection Description
	Config Section
	Node Section
	Pipe Section
	Window Section
	Channel Section
	Observer Section
	Layout Section
	View Section
	Canvas Section
	Segment Section
	Compound Section

