Line data Source code
1 : // Copyright 2005 Google Inc. All Rights Reserved.
2 : //
3 : // Redistribution and use in source and binary forms, with or without
4 : // modification, are permitted provided that the following conditions are
5 : // met:
6 : //
7 : // * Redistributions of source code must retain the above copyright
8 : // notice, this list of conditions and the following disclaimer.
9 : // * Redistributions in binary form must reproduce the above
10 : // copyright notice, this list of conditions and the following disclaimer
11 : // in the documentation and/or other materials provided with the
12 : // distribution.
13 : // * Neither the name of Google Inc. nor the names of its
14 : // contributors may be used to endorse or promote products derived from
15 : // this software without specific prior written permission.
16 : //
17 : // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 : // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 : // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 : // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 : // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 : // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 : // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 : // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 : // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 : // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 : // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 :
29 : #include "snappy.h"
30 : #include "snappy-internal.h"
31 : #include "snappy-sinksource.h"
32 :
33 : #include <stdio.h>
34 :
35 : #include <algorithm>
36 : #include <string>
37 : #include <vector>
38 :
39 : #pragma warning( disable: 4267 ) // Conversion from .. to .. loss of data
40 :
41 : namespace snappy {
42 :
43 : // Any hash function will produce a valid compressed bitstream, but a good
44 : // hash function reduces the number of collisions and thus yields better
45 : // compression for compressible input, and more speed for incompressible
46 : // input. Of course, it doesn't hurt if the hash function is reasonably fast
47 : // either, as it gets called a lot.
48 406502952 : static inline uint32 HashBytes(uint32 bytes, int shift) {
49 406502952 : uint32 kMul = 0x1e35a7bd;
50 406502952 : return (bytes * kMul) >> shift;
51 : }
52 202495922 : static inline uint32 Hash(const char* p, int shift) {
53 202495922 : return HashBytes(UNALIGNED_LOAD32(p), shift);
54 : }
55 :
56 13402 : size_t MaxCompressedLength(size_t source_len) {
57 : // Compressed data can be defined as:
58 : // compressed := item* literal*
59 : // item := literal* copy
60 : //
61 : // The trailing literal sequence has a space blowup of at most 62/60
62 : // since a literal of length 60 needs one tag byte + one extra byte
63 : // for length information.
64 : //
65 : // Item blowup is trickier to measure. Suppose the "copy" op copies
66 : // 4 bytes of data. Because of a special check in the encoding code,
67 : // we produce a 4-byte copy only if the offset is < 65536. Therefore
68 : // the copy op takes 3 bytes to encode, and this type of item leads
69 : // to at most the 62/60 blowup for representing literals.
70 : //
71 : // Suppose the "copy" op copies 5 bytes of data. If the offset is big
72 : // enough, it will take 5 bytes to encode the copy op. Therefore the
73 : // worst case here is a one-byte literal followed by a five-byte copy.
74 : // I.e., 6 bytes of input turn into 7 bytes of "compressed" data.
75 : //
76 : // This last factor dominates the blowup, so the final estimate is:
77 13402 : return 32 + source_len + source_len/6;
78 : }
79 :
80 : enum {
81 : LITERAL = 0,
82 : COPY_1_BYTE_OFFSET = 1, // 3 bit length + 3 bits of offset in opcode
83 : COPY_2_BYTE_OFFSET = 2,
84 : COPY_4_BYTE_OFFSET = 3
85 : };
86 : static const ssize_t kMaximumTagLength = 5; // COPY_4_BYTE_OFFSET plus the actual offset.
87 :
88 : // Copy "len" bytes from "src" to "op", one byte at a time. Used for
89 : // handling COPY operations where the input and output regions may
90 : // overlap. For example, suppose:
91 : // src == "ab"
92 : // op == src + 2
93 : // len == 20
94 : // After IncrementalCopy(src, op, len), the result will have
95 : // eleven copies of "ab"
96 : // ababababababababababab
97 : // Note that this does not match the semantics of either memcpy()
98 : // or memmove().
99 16 : static inline void IncrementalCopy(const char* src, char* op, ssize_t len) {
100 16 : assert(len > 0);
101 372 : do {
102 372 : *op++ = *src++;
103 : } while (--len > 0);
104 16 : }
105 :
106 : // Equivalent to IncrementalCopy except that it can write up to ten extra
107 : // bytes after the end of the copy, and that it is faster.
108 : //
109 : // The main part of this loop is a simple copy of eight bytes at a time until
110 : // we've copied (at least) the requested amount of bytes. However, if op and
111 : // src are less than eight bytes apart (indicating a repeating pattern of
112 : // length < 8), we first need to expand the pattern in order to get the correct
113 : // results. For instance, if the buffer looks like this, with the eight-byte
114 : // <src> and <op> patterns marked as intervals:
115 : //
116 : // abxxxxxxxxxxxx
117 : // [------] src
118 : // [------] op
119 : //
120 : // a single eight-byte copy from <src> to <op> will repeat the pattern once,
121 : // after which we can move <op> two bytes without moving <src>:
122 : //
123 : // ababxxxxxxxxxx
124 : // [------] src
125 : // [------] op
126 : //
127 : // and repeat the exercise until the two no longer overlap.
128 : //
129 : // This allows us to do very well in the special case of one single byte
130 : // repeated many times, without taking a big hit for more general cases.
131 : //
132 : // The worst case of extra writing past the end of the match occurs when
133 : // op - src == 1 and len == 1; the last copy will read from byte positions
134 : // [0..7] and write to [4..11], whereas it was only supposed to write to
135 : // position 1. Thus, ten excess bytes.
136 :
137 : namespace {
138 :
139 : const int kMaxIncrementCopyOverflow = 10;
140 :
141 1786294 : inline void IncrementalCopyFastPath(const char* src, char* op, ssize_t len) {
142 4413206 : while (op - src < 8) {
143 840618 : UnalignedCopy64(src, op);
144 840618 : len -= op - src;
145 840618 : op += op - src;
146 : }
147 7526608 : while (len > 0) {
148 3954020 : UnalignedCopy64(src, op);
149 3954020 : src += 8;
150 3954020 : op += 8;
151 3954020 : len -= 8;
152 : }
153 1786294 : }
154 :
155 : } // namespace
156 :
157 26974128 : static inline char* EmitLiteral(char* op,
158 : const char* literal,
159 : int len,
160 : bool allow_fast_path) {
161 26974128 : int n = len - 1; // Zero-length literals are disallowed
162 26974128 : if (n < 60) {
163 : // Fits in tag byte
164 26912366 : *op++ = LITERAL | (n << 2);
165 :
166 : // The vast majority of copies are below 16 bytes, for which a
167 : // call to memcpy is overkill. This fast path can sometimes
168 : // copy up to 15 bytes too much, but that is okay in the
169 : // main loop, since we have a bit to go on for both sides:
170 : //
171 : // - The input will always have kInputMarginBytes = 15 extra
172 : // available bytes, as long as we're in the main loop, and
173 : // if not, allow_fast_path = false.
174 : // - The output will always have 32 spare bytes (see
175 : // MaxCompressedLength).
176 26912366 : if (allow_fast_path && len <= 16) {
177 26438796 : UnalignedCopy64(literal, op);
178 26438796 : UnalignedCopy64(literal + 8, op + 8);
179 26438796 : return op + len;
180 : }
181 : } else {
182 : // Encode in upcoming bytes
183 61762 : char* base = op;
184 61762 : int count = 0;
185 61762 : op++;
186 196074 : while (n > 0) {
187 72550 : *op++ = n & 0xff;
188 72550 : n >>= 8;
189 72550 : count++;
190 : }
191 61762 : assert(count >= 1);
192 61762 : assert(count <= 4);
193 61762 : *base = LITERAL | ((59+count) << 2);
194 : }
195 535332 : memcpy(op, literal, len);
196 535332 : return op + len;
197 : }
198 :
199 88588060 : static inline char* EmitCopyLessThan64(char* op, size_t offset, int len) {
200 88588060 : assert(len <= 64);
201 88588060 : assert(len >= 4);
202 88588060 : assert(offset < 65536);
203 :
204 88588060 : if ((len < 12) && (offset < 2048)) {
205 62854806 : size_t len_minus_4 = len - 4;
206 62854806 : assert(len_minus_4 < 8); // Must fit in 3 bits
207 62854806 : *op++ = COPY_1_BYTE_OFFSET + ((len_minus_4) << 2) + ((offset >> 8) << 5);
208 62854806 : *op++ = offset & 0xff;
209 : } else {
210 25733254 : *op++ = COPY_2_BYTE_OFFSET + ((len-1) << 2);
211 25733254 : LittleEndian::Store16(op, offset);
212 25733254 : op += 2;
213 : }
214 88588060 : return op;
215 : }
216 :
217 88534874 : static inline char* EmitCopy(char* op, size_t offset, int len) {
218 : // Emit 64 byte copies but make sure to keep at least four bytes reserved
219 177119432 : while (len >= 68) {
220 49684 : op = EmitCopyLessThan64(op, offset, 64);
221 49684 : len -= 64;
222 : }
223 :
224 : // Emit an extra 60 byte copy if have too much data to fit in one copy
225 88534874 : if (len > 64) {
226 3502 : op = EmitCopyLessThan64(op, offset, 60);
227 3502 : len -= 60;
228 : }
229 :
230 : // Emit remainder
231 88534874 : op = EmitCopyLessThan64(op, offset, len);
232 88534874 : return op;
233 : }
234 :
235 :
236 0 : bool GetUncompressedLength(const char* start, size_t n, size_t* result) {
237 0 : uint32 v = 0;
238 0 : const char* limit = start + n;
239 0 : if (Varint::Parse32WithLimit(start, limit, &v) != NULL) {
240 0 : *result = v;
241 0 : return true;
242 : } else {
243 0 : return false;
244 : }
245 : }
246 :
247 : namespace internal {
248 13314 : uint16* WorkingMemory::GetHashTable(size_t input_size, int* table_size) {
249 : // Use smaller hash table when input.size() is smaller, since we
250 : // fill the table, incurring O(hash table size) overhead for
251 : // compression, and if the input is short, we won't need that
252 : // many hash table entries anyway.
253 : assert(kMaxHashTableSize >= 256);
254 13314 : size_t htsize = 256;
255 106426 : while (htsize < kMaxHashTableSize && htsize < input_size) {
256 79798 : htsize <<= 1;
257 : }
258 :
259 : uint16* table;
260 13314 : if (htsize <= ARRAYSIZE(small_table_)) {
261 14 : table = small_table_;
262 : } else {
263 13300 : if (large_table_ == NULL) {
264 76 : large_table_ = new uint16[kMaxHashTableSize];
265 : }
266 13300 : table = large_table_;
267 : }
268 :
269 13314 : *table_size = htsize;
270 13314 : memset(table, 0, htsize * sizeof(*table));
271 13314 : return table;
272 : }
273 : } // end namespace internal
274 :
275 : // For 0 <= offset <= 4, GetUint32AtOffset(GetEightBytesAt(p), offset) will
276 : // equal UNALIGNED_LOAD32(p + offset). Motivation: On x86-64 hardware we have
277 : // empirically found that overlapping loads such as
278 : // UNALIGNED_LOAD32(p) ... UNALIGNED_LOAD32(p+1) ... UNALIGNED_LOAD32(p+2)
279 : // are slower than UNALIGNED_LOAD64(p) followed by shifts and casts to uint32.
280 : //
281 : // We have different versions for 64- and 32-bit; ideally we would avoid the
282 : // two functions and just inline the UNALIGNED_LOAD64 call into
283 : // GetUint32AtOffset, but GCC (at least not as of 4.6) is seemingly not clever
284 : // enough to avoid loading the value multiple times then. For 64-bit, the load
285 : // is done when GetEightBytesAt() is called, whereas for 32-bit, the load is
286 : // done at GetUint32AtOffset() time.
287 :
288 : #ifdef ARCH_K8
289 :
290 : typedef uint64 EightBytesReference;
291 :
292 88526968 : static inline EightBytesReference GetEightBytesAt(const char* ptr) {
293 88526968 : return UNALIGNED_LOAD64(ptr);
294 : }
295 :
296 292533998 : static inline uint32 GetUint32AtOffset(uint64 v, int offset) {
297 292533998 : assert(offset >= 0);
298 292533998 : assert(offset <= 4);
299 292533998 : return v >> (LittleEndian::IsLittleEndian() ? 8 * offset : 32 - 8 * offset);
300 : }
301 :
302 : #else
303 :
304 : typedef const char* EightBytesReference;
305 :
306 : static inline EightBytesReference GetEightBytesAt(const char* ptr) {
307 : return ptr;
308 : }
309 :
310 : static inline uint32 GetUint32AtOffset(const char* v, int offset) {
311 : assert(offset >= 0);
312 : assert(offset <= 4);
313 : return UNALIGNED_LOAD32(v + offset);
314 : }
315 :
316 : #endif
317 :
318 : // Flat array compression that does not emit the "uncompressed length"
319 : // prefix. Compresses "input" string to the "*op" buffer.
320 : //
321 : // REQUIRES: "input" is at most "kBlockSize" bytes long.
322 : // REQUIRES: "op" points to an array of memory that is at least
323 : // "MaxCompressedLength(input.size())" in size.
324 : // REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero.
325 : // REQUIRES: "table_size" is a power of two
326 : //
327 : // Returns an "end" pointer into "op" buffer.
328 : // "end - op" is the compressed size of "input".
329 : namespace internal {
330 13314 : char* CompressFragment(const char* input,
331 : size_t input_size,
332 : char* op,
333 : uint16* table,
334 : const int table_size) {
335 : // "ip" is the input pointer, and "op" is the output pointer.
336 13314 : const char* ip = input;
337 13314 : assert(input_size <= kBlockSize);
338 13314 : assert((table_size & (table_size - 1)) == 0); // table must be power of two
339 13314 : const int shift = 32 - Bits::Log2Floor(table_size);
340 13314 : assert(static_cast<int>(kuint32max >> shift) == table_size - 1);
341 13314 : const char* ip_end = input + input_size;
342 13314 : const char* base_ip = ip;
343 : // Bytes in [next_emit, ip) will be emitted as literal bytes. Or
344 : // [next_emit, ip_end) after the main loop.
345 13314 : const char* next_emit = ip;
346 :
347 13314 : const size_t kInputMarginBytes = 15;
348 13314 : if (PREDICT_TRUE(input_size >= kInputMarginBytes)) {
349 13310 : const char* ip_limit = input + input_size - kInputMarginBytes;
350 :
351 13310 : for (uint32 next_hash = Hash(++ip, shift); ; ) {
352 26966404 : assert(next_emit < ip);
353 : // The body of this loop calls EmitLiteral once and then EmitCopy one or
354 : // more times. (The exception is that when we're close to exhausting
355 : // the input we goto emit_remainder.)
356 : //
357 : // In the first iteration of this loop we're just starting, so
358 : // there's nothing to copy, so calling EmitLiteral once is
359 : // necessary. And we only start a new iteration when the
360 : // current iteration has determined that a call to EmitLiteral will
361 : // precede the next call to EmitCopy (if any).
362 : //
363 : // Step 1: Scan forward in the input looking for a 4-byte-long match.
364 : // If we get close to exhausting the input then goto emit_remainder.
365 : //
366 : // Heuristic match skipping: If 32 bytes are scanned with no matches
367 : // found, start looking only at every other byte. If 32 more bytes are
368 : // scanned, look at every third byte, etc.. When a match is found,
369 : // immediately go back to looking at every byte. This is a small loss
370 : // (~5% performance, ~0.1% density) for compressible data due to more
371 : // bookkeeping, but for non-compressible data (such as JPEG) it's a huge
372 : // win since the compressor quickly "realizes" the data is incompressible
373 : // and doesn't bother looking for matches everywhere.
374 : //
375 : // The "skip" variable keeps track of how many bytes there are since the
376 : // last match; dividing it by 32 (ie. right-shifting by five) gives the
377 : // number of bytes to move ahead for each iteration.
378 26966404 : uint32 skip = 32;
379 :
380 26966404 : const char* next_ip = ip;
381 : const char* candidate;
382 101238604 : do {
383 101244008 : ip = next_ip;
384 101244008 : uint32 hash = next_hash;
385 101244008 : assert(hash == Hash(ip, shift));
386 101244008 : uint32 bytes_between_hash_lookups = skip++ >> 5;
387 101244008 : next_ip = ip + bytes_between_hash_lookups;
388 101244008 : if (PREDICT_FALSE(next_ip > ip_limit)) {
389 5404 : goto emit_remainder;
390 : }
391 101238604 : next_hash = Hash(next_ip, shift);
392 101238604 : candidate = base_ip + table[hash];
393 101238604 : assert(candidate >= base_ip);
394 101238604 : assert(candidate < ip);
395 :
396 101238604 : table[hash] = ip - base_ip;
397 101238604 : } while (PREDICT_TRUE(UNALIGNED_LOAD32(ip) !=
398 : UNALIGNED_LOAD32(candidate)));
399 :
400 : // Step 2: A 4-byte match has been found. We'll later see if more
401 : // than 4 bytes match. But, prior to the match, input
402 : // bytes [next_emit, ip) are unmatched. Emit them as "literal bytes."
403 26961000 : assert(next_emit + 16 <= ip_end);
404 26961000 : op = EmitLiteral(op, next_emit, ip - next_emit, true);
405 :
406 : // Step 3: Call EmitCopy, and then see if another EmitCopy could
407 : // be our next move. Repeat until we find no match for the
408 : // input immediately after what was consumed by the last EmitCopy call.
409 : //
410 : // If we exit this loop normally then we need to call EmitLiteral next,
411 : // though we don't yet know how big the literal will be. We handle that
412 : // by proceeding to the next iteration of the main loop. We also can exit
413 : // this loop via goto if we get close to exhausting the input.
414 : EightBytesReference input_bytes;
415 26961000 : uint32 candidate_bytes = 0;
416 :
417 88526968 : do {
418 : // We have a 4-byte match at ip, and no need to emit any
419 : // "literal bytes" prior to ip.
420 88534874 : const char* base = ip;
421 88534874 : int matched = 4 + FindMatchLength(candidate + 4, ip + 4, ip_end);
422 88534874 : ip += matched;
423 88534874 : size_t offset = base - candidate;
424 88534874 : assert(0 == memcmp(base, candidate, matched));
425 88534874 : op = EmitCopy(op, offset, matched);
426 : // We could immediately start working at ip now, but to improve
427 : // compression we first update table[Hash(ip - 1, ...)].
428 88534874 : const char* insert_tail = ip - 1;
429 88534874 : next_emit = ip;
430 88534874 : if (PREDICT_FALSE(ip >= ip_limit)) {
431 7906 : goto emit_remainder;
432 : }
433 88526968 : input_bytes = GetEightBytesAt(insert_tail);
434 88526968 : uint32 prev_hash = HashBytes(GetUint32AtOffset(input_bytes, 0), shift);
435 88526968 : table[prev_hash] = ip - base_ip - 1;
436 88526968 : uint32 cur_hash = HashBytes(GetUint32AtOffset(input_bytes, 1), shift);
437 88526968 : candidate = base_ip + table[cur_hash];
438 88526968 : candidate_bytes = UNALIGNED_LOAD32(candidate);
439 88526968 : table[cur_hash] = ip - base_ip;
440 88526968 : } while (GetUint32AtOffset(input_bytes, 1) == candidate_bytes);
441 :
442 26953094 : next_hash = HashBytes(GetUint32AtOffset(input_bytes, 2), shift);
443 26953094 : ++ip;
444 26953094 : }
445 : }
446 :
447 : emit_remainder:
448 : // Emit the remaining bytes as a literal
449 13314 : if (next_emit < ip_end) {
450 13128 : op = EmitLiteral(op, next_emit, ip_end - next_emit, false);
451 : }
452 :
453 13314 : return op;
454 : }
455 : } // end namespace internal
456 :
457 : // Signature of output types needed by decompression code.
458 : // The decompression code is templatized on a type that obeys this
459 : // signature so that we do not pay virtual function call overhead in
460 : // the middle of a tight decompression loop.
461 : //
462 : // class DecompressionWriter {
463 : // public:
464 : // // Called before decompression
465 : // void SetExpectedLength(size_t length);
466 : //
467 : // // Called after decompression
468 : // bool CheckLength() const;
469 : //
470 : // // Called repeatedly during decompression
471 : // bool Append(const char* ip, size_t length);
472 : // bool AppendFromSelf(uint32 offset, size_t length);
473 : //
474 : // // The rules for how TryFastAppend differs from Append are somewhat
475 : // // convoluted:
476 : // //
477 : // // - TryFastAppend is allowed to decline (return false) at any
478 : // // time, for any reason -- just "return false" would be
479 : // // a perfectly legal implementation of TryFastAppend.
480 : // // The intention is for TryFastAppend to allow a fast path
481 : // // in the common case of a small append.
482 : // // - TryFastAppend is allowed to read up to <available> bytes
483 : // // from the input buffer, whereas Append is allowed to read
484 : // // <length>. However, if it returns true, it must leave
485 : // // at least five (kMaximumTagLength) bytes in the input buffer
486 : // // afterwards, so that there is always enough space to read the
487 : // // next tag without checking for a refill.
488 : // // - TryFastAppend must always return decline (return false)
489 : // // if <length> is 61 or more, as in this case the literal length is not
490 : // // decoded fully. In practice, this should not be a big problem,
491 : // // as it is unlikely that one would implement a fast path accepting
492 : // // this much data.
493 : // //
494 : // bool TryFastAppend(const char* ip, size_t available, size_t length);
495 : // };
496 :
497 : // -----------------------------------------------------------------------
498 : // Lookup table for decompression code. Generated by ComputeTable() below.
499 : // -----------------------------------------------------------------------
500 :
501 : // Mapping from i in range [0,4] to a mask to extract the bottom 8*i bits
502 : static const uint32 wordmask[] = {
503 : 0u, 0xffu, 0xffffu, 0xffffffu, 0xffffffffu
504 : };
505 :
506 : // Data stored per entry in lookup table:
507 : // Range Bits-used Description
508 : // ------------------------------------
509 : // 1..64 0..7 Literal/copy length encoded in opcode byte
510 : // 0..7 8..10 Copy offset encoded in opcode byte / 256
511 : // 0..4 11..13 Extra bytes after opcode
512 : //
513 : // We use eight bits for the length even though 7 would have sufficed
514 : // because of efficiency reasons:
515 : // (1) Extracting a byte is faster than a bit-field
516 : // (2) It properly aligns copy offset so we do not need a <<8
517 : static const uint16 char_table[256] = {
518 : 0x0001, 0x0804, 0x1001, 0x2001, 0x0002, 0x0805, 0x1002, 0x2002,
519 : 0x0003, 0x0806, 0x1003, 0x2003, 0x0004, 0x0807, 0x1004, 0x2004,
520 : 0x0005, 0x0808, 0x1005, 0x2005, 0x0006, 0x0809, 0x1006, 0x2006,
521 : 0x0007, 0x080a, 0x1007, 0x2007, 0x0008, 0x080b, 0x1008, 0x2008,
522 : 0x0009, 0x0904, 0x1009, 0x2009, 0x000a, 0x0905, 0x100a, 0x200a,
523 : 0x000b, 0x0906, 0x100b, 0x200b, 0x000c, 0x0907, 0x100c, 0x200c,
524 : 0x000d, 0x0908, 0x100d, 0x200d, 0x000e, 0x0909, 0x100e, 0x200e,
525 : 0x000f, 0x090a, 0x100f, 0x200f, 0x0010, 0x090b, 0x1010, 0x2010,
526 : 0x0011, 0x0a04, 0x1011, 0x2011, 0x0012, 0x0a05, 0x1012, 0x2012,
527 : 0x0013, 0x0a06, 0x1013, 0x2013, 0x0014, 0x0a07, 0x1014, 0x2014,
528 : 0x0015, 0x0a08, 0x1015, 0x2015, 0x0016, 0x0a09, 0x1016, 0x2016,
529 : 0x0017, 0x0a0a, 0x1017, 0x2017, 0x0018, 0x0a0b, 0x1018, 0x2018,
530 : 0x0019, 0x0b04, 0x1019, 0x2019, 0x001a, 0x0b05, 0x101a, 0x201a,
531 : 0x001b, 0x0b06, 0x101b, 0x201b, 0x001c, 0x0b07, 0x101c, 0x201c,
532 : 0x001d, 0x0b08, 0x101d, 0x201d, 0x001e, 0x0b09, 0x101e, 0x201e,
533 : 0x001f, 0x0b0a, 0x101f, 0x201f, 0x0020, 0x0b0b, 0x1020, 0x2020,
534 : 0x0021, 0x0c04, 0x1021, 0x2021, 0x0022, 0x0c05, 0x1022, 0x2022,
535 : 0x0023, 0x0c06, 0x1023, 0x2023, 0x0024, 0x0c07, 0x1024, 0x2024,
536 : 0x0025, 0x0c08, 0x1025, 0x2025, 0x0026, 0x0c09, 0x1026, 0x2026,
537 : 0x0027, 0x0c0a, 0x1027, 0x2027, 0x0028, 0x0c0b, 0x1028, 0x2028,
538 : 0x0029, 0x0d04, 0x1029, 0x2029, 0x002a, 0x0d05, 0x102a, 0x202a,
539 : 0x002b, 0x0d06, 0x102b, 0x202b, 0x002c, 0x0d07, 0x102c, 0x202c,
540 : 0x002d, 0x0d08, 0x102d, 0x202d, 0x002e, 0x0d09, 0x102e, 0x202e,
541 : 0x002f, 0x0d0a, 0x102f, 0x202f, 0x0030, 0x0d0b, 0x1030, 0x2030,
542 : 0x0031, 0x0e04, 0x1031, 0x2031, 0x0032, 0x0e05, 0x1032, 0x2032,
543 : 0x0033, 0x0e06, 0x1033, 0x2033, 0x0034, 0x0e07, 0x1034, 0x2034,
544 : 0x0035, 0x0e08, 0x1035, 0x2035, 0x0036, 0x0e09, 0x1036, 0x2036,
545 : 0x0037, 0x0e0a, 0x1037, 0x2037, 0x0038, 0x0e0b, 0x1038, 0x2038,
546 : 0x0039, 0x0f04, 0x1039, 0x2039, 0x003a, 0x0f05, 0x103a, 0x203a,
547 : 0x003b, 0x0f06, 0x103b, 0x203b, 0x003c, 0x0f07, 0x103c, 0x203c,
548 : 0x0801, 0x0f08, 0x103d, 0x203d, 0x1001, 0x0f09, 0x103e, 0x203e,
549 : 0x1801, 0x0f0a, 0x103f, 0x203f, 0x2001, 0x0f0b, 0x1040, 0x2040
550 : };
551 :
552 : // In debug mode, allow optional computation of the table at startup.
553 : // Also, check that the decompression table is correct.
554 : #if 0
555 : DEFINE_bool(snappy_dump_decompression_table, false,
556 : "If true, we print the decompression table at startup.");
557 :
558 : static uint16 MakeEntry(unsigned int extra,
559 : unsigned int len,
560 : unsigned int copy_offset) {
561 : // Check that all of the fields fit within the allocated space
562 : assert(extra == (extra & 0x7)); // At most 3 bits
563 : assert(copy_offset == (copy_offset & 0x7)); // At most 3 bits
564 : assert(len == (len & 0x7f)); // At most 7 bits
565 : return len | (copy_offset << 8) | (extra << 11);
566 : }
567 :
568 : static void ComputeTable() {
569 : uint16 dst[256];
570 :
571 : // Place invalid entries in all places to detect missing initialization
572 : int assigned = 0;
573 : for (int i = 0; i < 256; i++) {
574 : dst[i] = 0xffff;
575 : }
576 :
577 : // Small LITERAL entries. We store (len-1) in the top 6 bits.
578 : for (unsigned int len = 1; len <= 60; len++) {
579 : dst[LITERAL | ((len-1) << 2)] = MakeEntry(0, len, 0);
580 : assigned++;
581 : }
582 :
583 : // Large LITERAL entries. We use 60..63 in the high 6 bits to
584 : // encode the number of bytes of length info that follow the opcode.
585 : for (unsigned int extra_bytes = 1; extra_bytes <= 4; extra_bytes++) {
586 : // We set the length field in the lookup table to 1 because extra
587 : // bytes encode len-1.
588 : dst[LITERAL | ((extra_bytes+59) << 2)] = MakeEntry(extra_bytes, 1, 0);
589 : assigned++;
590 : }
591 :
592 : // COPY_1_BYTE_OFFSET.
593 : //
594 : // The tag byte in the compressed data stores len-4 in 3 bits, and
595 : // offset/256 in 5 bits. offset%256 is stored in the next byte.
596 : //
597 : // This format is used for length in range [4..11] and offset in
598 : // range [0..2047]
599 : for (unsigned int len = 4; len < 12; len++) {
600 : for (unsigned int offset = 0; offset < 2048; offset += 256) {
601 : dst[COPY_1_BYTE_OFFSET | ((len-4)<<2) | ((offset>>8)<<5)] =
602 : MakeEntry(1, len, offset>>8);
603 : assigned++;
604 : }
605 : }
606 :
607 : // COPY_2_BYTE_OFFSET.
608 : // Tag contains len-1 in top 6 bits, and offset in next two bytes.
609 : for (unsigned int len = 1; len <= 64; len++) {
610 : dst[COPY_2_BYTE_OFFSET | ((len-1)<<2)] = MakeEntry(2, len, 0);
611 : assigned++;
612 : }
613 :
614 : // COPY_4_BYTE_OFFSET.
615 : // Tag contents len-1 in top 6 bits, and offset in next four bytes.
616 : for (unsigned int len = 1; len <= 64; len++) {
617 : dst[COPY_4_BYTE_OFFSET | ((len-1)<<2)] = MakeEntry(4, len, 0);
618 : assigned++;
619 : }
620 :
621 : // Check that each entry was initialized exactly once.
622 : if (assigned != 256) {
623 : fprintf(stderr, "ComputeTable: assigned only %d of 256\n", assigned);
624 : abort();
625 : }
626 : for (int i = 0; i < 256; i++) {
627 : if (dst[i] == 0xffff) {
628 : fprintf(stderr, "ComputeTable: did not assign byte %d\n", i);
629 : abort();
630 : }
631 : }
632 :
633 : if (FLAGS_snappy_dump_decompression_table) {
634 : printf("static const uint16 char_table[256] = {\n ");
635 : for (int i = 0; i < 256; i++) {
636 : printf("0x%04x%s",
637 : dst[i],
638 : ((i == 255) ? "\n" : (((i%8) == 7) ? ",\n " : ", ")));
639 : }
640 : printf("};\n");
641 : }
642 :
643 : // Check that computed table matched recorded table
644 : for (int i = 0; i < 256; i++) {
645 : if (dst[i] != char_table[i]) {
646 : fprintf(stderr, "ComputeTable: byte %d: computed (%x), expect (%x)\n",
647 : i, static_cast<int>(dst[i]), static_cast<int>(char_table[i]));
648 : abort();
649 : }
650 : }
651 : }
652 : #endif /* !NDEBUG */
653 :
654 : // Helper class for decompression
655 : class SnappyDecompressor {
656 : private:
657 : Source* reader_; // Underlying source of bytes to decompress
658 : const char* ip_; // Points to next buffered byte
659 : const char* ip_limit_; // Points just past buffered bytes
660 : uint32 peeked_; // Bytes peeked from reader (need to skip)
661 : bool eof_; // Hit end of input without an error?
662 : char scratch_[kMaximumTagLength]; // See RefillTag().
663 :
664 : // Ensure that all of the tag metadata for the next tag is available
665 : // in [ip_..ip_limit_-1]. Also ensures that [ip,ip+4] is readable even
666 : // if (ip_limit_ - ip_ < 5).
667 : //
668 : // Returns true on success, false on error or end of input.
669 : bool RefillTag();
670 :
671 : public:
672 : // cppcheck-suppress uninitMemberVar
673 76 : explicit SnappyDecompressor(Source* reader)
674 : : reader_(reader),
675 : ip_(NULL),
676 : ip_limit_(NULL),
677 : peeked_(0),
678 76 : eof_(false) {
679 76 : }
680 :
681 76 : ~SnappyDecompressor() {
682 : // Advance past any bytes we peeked at from the reader
683 76 : reader_->Skip(peeked_);
684 76 : }
685 :
686 : // Returns true iff we have hit the end of the input without an error.
687 76 : bool eof() const {
688 76 : return eof_;
689 : }
690 :
691 : // Read the uncompressed length stored at the start of the compressed data.
692 : // On succcess, stores the length in *result and returns true.
693 : // On failure, returns false.
694 76 : bool ReadUncompressedLength(uint32* result) {
695 76 : assert(ip_ == NULL); // Must not have read anything yet
696 : // Length is encoded in 1..5 bytes
697 76 : *result = 0;
698 76 : uint32 shift = 0;
699 : while (true) {
700 262 : if (shift >= 32) return false;
701 : size_t n;
702 262 : const char* ip = reader_->Peek(&n);
703 262 : if (n == 0) return false;
704 262 : const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip));
705 262 : reader_->Skip(1);
706 262 : *result |= static_cast<uint32>(c & 0x7f) << shift;
707 262 : if (c < 128) {
708 76 : break;
709 : }
710 186 : shift += 7;
711 : }
712 262 : return true;
713 : }
714 :
715 : // Process the next item found in the input.
716 : // Returns true if successful, false on error or end of input.
717 : template <class Writer>
718 76 : void DecompressAllTags(Writer* writer) {
719 76 : const char* ip = ip_;
720 :
721 : // We could have put this refill fragment only at the beginning of the loop.
722 : // However, duplicating it at the end of each branch gives the compiler more
723 : // scope to optimize the <ip_limit_ - ip> expression based on the local
724 : // context, which overall increases speed.
725 : #define MAYBE_REFILL() \
726 : if (ip_limit_ - ip < kMaximumTagLength) { \
727 : ip_ = ip; \
728 : if (!RefillTag()) return; \
729 : ip = ip_; \
730 : }
731 :
732 76 : MAYBE_REFILL();
733 115562084 : for ( ;; ) {
734 115562160 : const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip++));
735 :
736 115562160 : if ((c & 0x3) == LITERAL) {
737 26974108 : size_t literal_length = (c >> 2) + 1u;
738 26974108 : if (writer->TryFastAppend(ip, ip_limit_ - ip, literal_length)) {
739 26446830 : assert(literal_length < 61);
740 26446830 : ip += literal_length;
741 : // NOTE(user): There is no MAYBE_REFILL() here, as TryFastAppend()
742 : // will not return true unless there's already at least five spare
743 : // bytes in addition to the literal.
744 26446830 : continue;
745 : }
746 527278 : if (PREDICT_FALSE(literal_length >= 61)) {
747 : // Long literal.
748 61762 : const size_t literal_length_length = literal_length - 60;
749 61762 : literal_length =
750 61762 : (LittleEndian::Load32(ip) & wordmask[literal_length_length]) + 1;
751 61762 : ip += literal_length_length;
752 : }
753 :
754 527278 : size_t avail = ip_limit_ - ip;
755 1054556 : while (avail < literal_length) {
756 0 : if (!writer->Append(ip, avail)) return;
757 0 : literal_length -= avail;
758 0 : reader_->Skip(peeked_);
759 : size_t n;
760 0 : ip = reader_->Peek(&n);
761 0 : avail = n;
762 0 : peeked_ = avail;
763 0 : if (avail == 0) return; // Premature end of input
764 0 : ip_limit_ = ip + avail;
765 : }
766 527278 : if (!writer->Append(ip, literal_length)) {
767 0 : return;
768 : }
769 527278 : ip += literal_length;
770 527278 : MAYBE_REFILL();
771 : } else {
772 88588052 : const uint32 entry = char_table[c];
773 88588052 : const uint32 trailer = LittleEndian::Load32(ip) & wordmask[entry >> 11];
774 88588052 : const uint32 length = entry & 0xff;
775 88588052 : ip += entry >> 11;
776 :
777 : // copy_offset/256 is encoded in bits 8..10. By just fetching
778 : // those bits, we get copy_offset (since the bit-field starts at
779 : // bit 8).
780 88588052 : const uint32 copy_offset = entry & 0x700;
781 88588052 : if (!writer->AppendFromSelf(copy_offset + trailer, length)) {
782 0 : return;
783 : }
784 88588052 : MAYBE_REFILL();
785 : }
786 : }
787 :
788 : #undef MAYBE_REFILL
789 : }
790 : };
791 :
792 160 : bool SnappyDecompressor::RefillTag() {
793 160 : const char* ip = ip_;
794 160 : if (ip == ip_limit_) {
795 : // Fetch a new fragment from the reader
796 152 : reader_->Skip(peeked_); // All peeked bytes are used up
797 : size_t n;
798 152 : ip = reader_->Peek(&n);
799 152 : peeked_ = n;
800 152 : if (n == 0) {
801 76 : eof_ = true;
802 76 : return false;
803 : }
804 76 : ip_limit_ = ip + n;
805 : }
806 :
807 : // Read the tag character
808 84 : assert(ip < ip_limit_);
809 84 : const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip));
810 84 : const uint32 entry = char_table[c];
811 84 : const uint32 needed = (entry >> 11) + 1; // +1 byte for 'c'
812 84 : assert(needed <= sizeof(scratch_));
813 :
814 : // Read more bytes from reader if needed
815 84 : uint32 nbuf = ip_limit_ - ip;
816 84 : if (nbuf < needed) {
817 : // Stitch together bytes from ip and reader to form the word
818 : // contents. We store the needed bytes in "scratch_". They
819 : // will be consumed immediately by the caller since we do not
820 : // read more than we need.
821 0 : memmove(scratch_, ip, nbuf);
822 0 : reader_->Skip(peeked_); // All peeked bytes are used up
823 0 : peeked_ = 0;
824 0 : while (nbuf < needed) {
825 : size_t length;
826 0 : const char* src = reader_->Peek(&length);
827 0 : if (length == 0) return false;
828 0 : uint32 to_add = min<uint32>(needed - nbuf, length);
829 0 : memcpy(scratch_ + nbuf, src, to_add);
830 0 : nbuf += to_add;
831 0 : reader_->Skip(to_add);
832 : }
833 0 : assert(nbuf == needed);
834 0 : ip_ = scratch_;
835 0 : ip_limit_ = scratch_ + needed;
836 84 : } else if (nbuf < kMaximumTagLength) {
837 : // Have enough bytes, but move into scratch_ so that we do not
838 : // read past end of input
839 8 : memmove(scratch_, ip, nbuf);
840 8 : reader_->Skip(peeked_); // All peeked bytes are used up
841 8 : peeked_ = 0;
842 8 : ip_ = scratch_;
843 8 : ip_limit_ = scratch_ + nbuf;
844 : } else {
845 : // Pass pointer to buffer returned by reader_.
846 76 : ip_ = ip;
847 : }
848 84 : return true;
849 : }
850 :
851 : template <typename Writer>
852 76 : static bool InternalUncompress(Source* r, Writer* writer) {
853 : // Read the uncompressed length from the front of the compressed input
854 76 : SnappyDecompressor decompressor(r);
855 76 : uint32 uncompressed_len = 0;
856 76 : if (!decompressor.ReadUncompressedLength(&uncompressed_len)) return false;
857 76 : return InternalUncompressAllTags(&decompressor, writer, uncompressed_len);
858 : }
859 :
860 : template <typename Writer>
861 76 : static bool InternalUncompressAllTags(SnappyDecompressor* decompressor,
862 : Writer* writer,
863 : uint32 uncompressed_len) {
864 76 : writer->SetExpectedLength(uncompressed_len);
865 :
866 : // Process the entire input
867 76 : decompressor->DecompressAllTags(writer);
868 76 : return (decompressor->eof() && writer->CheckLength());
869 : }
870 :
871 0 : bool GetUncompressedLength(Source* source, uint32* result) {
872 0 : SnappyDecompressor decompressor(source);
873 0 : return decompressor.ReadUncompressedLength(result);
874 : }
875 :
876 88 : size_t Compress(Source* reader, Sink* writer) {
877 88 : size_t written = 0;
878 88 : size_t N = reader->Available();
879 : char ulength[Varint::kMax32];
880 88 : char* p = Varint::Encode32(ulength, N);
881 88 : writer->Append(ulength, p-ulength);
882 88 : written += (p - ulength);
883 :
884 88 : internal::WorkingMemory wmem;
885 88 : char* scratch = NULL;
886 88 : char* scratch_output = NULL;
887 :
888 13490 : while (N > 0) {
889 : // Get next block to compress (without copying if possible)
890 : size_t fragment_size;
891 13314 : const char* fragment = reader->Peek(&fragment_size);
892 13314 : assert(fragment_size != 0); // premature end of input
893 13314 : const size_t num_to_read = min(N, kBlockSize);
894 13314 : size_t bytes_read = fragment_size;
895 :
896 13314 : size_t pending_advance = 0;
897 13314 : if (bytes_read >= num_to_read) {
898 : // Buffer returned by reader is large enough
899 13314 : pending_advance = num_to_read;
900 13314 : fragment_size = num_to_read;
901 : } else {
902 : // Read into scratch buffer
903 0 : if (scratch == NULL) {
904 : // If this is the last iteration, we want to allocate N bytes
905 : // of space, otherwise the max possible kBlockSize space.
906 : // num_to_read contains exactly the correct value
907 0 : scratch = new char[num_to_read];
908 : }
909 0 : memcpy(scratch, fragment, bytes_read);
910 0 : reader->Skip(bytes_read);
911 :
912 0 : while (bytes_read < num_to_read) {
913 0 : fragment = reader->Peek(&fragment_size);
914 0 : size_t n = min<size_t>(fragment_size, num_to_read - bytes_read);
915 0 : memcpy(scratch + bytes_read, fragment, n);
916 0 : bytes_read += n;
917 0 : reader->Skip(n);
918 : }
919 0 : assert(bytes_read == num_to_read);
920 0 : fragment = scratch;
921 0 : fragment_size = num_to_read;
922 : }
923 13314 : assert(fragment_size == num_to_read);
924 :
925 : // Get encoding table for compression
926 : int table_size;
927 13314 : uint16* table = wmem.GetHashTable(num_to_read, &table_size);
928 :
929 : // Compress input_fragment and append to dest
930 13314 : const int max_output = MaxCompressedLength(num_to_read);
931 :
932 : // Need a scratch buffer for the output, in case the byte sink doesn't
933 : // have room for us directly.
934 13314 : if (scratch_output == NULL) {
935 88 : scratch_output = new char[max_output];
936 : } else {
937 : // Since we encode kBlockSize regions followed by a region
938 : // which is <= kBlockSize in length, a previously allocated
939 : // scratch_output[] region is big enough for this iteration.
940 : }
941 13314 : char* dest = writer->GetAppendBuffer(max_output, scratch_output);
942 : char* end = internal::CompressFragment(fragment, fragment_size,
943 13314 : dest, table, table_size);
944 13314 : writer->Append(dest, end - dest);
945 13314 : written += (end - dest);
946 :
947 13314 : N -= num_to_read;
948 13314 : reader->Skip(pending_advance);
949 : }
950 :
951 88 : delete[] scratch;
952 88 : delete[] scratch_output;
953 :
954 88 : return written;
955 : }
956 :
957 : // -----------------------------------------------------------------------
958 : // IOVec interfaces
959 : // -----------------------------------------------------------------------
960 :
961 : // A type that writes to an iovec.
962 : // Note that this is not a "ByteSink", but a type that matches the
963 : // Writer template argument to SnappyDecompressor::DecompressAllTags().
964 : class SnappyIOVecWriter {
965 : private:
966 : const struct iovec* output_iov_;
967 : const size_t output_iov_count_;
968 :
969 : // We are currently writing into output_iov_[curr_iov_index_].
970 : size_t curr_iov_index_;
971 :
972 : // Bytes written to output_iov_[curr_iov_index_] so far.
973 : size_t curr_iov_written_;
974 :
975 : // Total bytes decompressed into output_iov_ so far.
976 : size_t total_written_;
977 :
978 : // Maximum number of bytes that will be decompressed into output_iov_.
979 : size_t output_limit_;
980 :
981 0 : inline char* GetIOVecPointer(const size_t index, const size_t offset) {
982 0 : return reinterpret_cast<char*>(output_iov_[index].iov_base) +
983 0 : offset;
984 : }
985 :
986 : public:
987 : // Does not take ownership of iov. iov must be valid during the
988 : // entire lifetime of the SnappyIOVecWriter.
989 0 : inline SnappyIOVecWriter(const struct iovec* iov, size_t iov_count)
990 : : output_iov_(iov),
991 : output_iov_count_(iov_count),
992 : curr_iov_index_(0),
993 : curr_iov_written_(0),
994 : total_written_(0),
995 0 : output_limit_(-1) {
996 0 : }
997 :
998 0 : inline void SetExpectedLength(size_t len) {
999 0 : output_limit_ = len;
1000 0 : }
1001 :
1002 0 : inline bool CheckLength() const {
1003 0 : return total_written_ == output_limit_;
1004 : }
1005 :
1006 0 : inline bool Append(const char* ip, size_t len) {
1007 0 : if (total_written_ + len > output_limit_) {
1008 0 : return false;
1009 : }
1010 :
1011 0 : while (len > 0) {
1012 0 : assert(curr_iov_written_ <= output_iov_[curr_iov_index_].iov_len);
1013 0 : if (curr_iov_written_ >= output_iov_[curr_iov_index_].iov_len) {
1014 : // This iovec is full. Go to the next one.
1015 0 : if (curr_iov_index_ + 1 >= output_iov_count_) {
1016 0 : return false;
1017 : }
1018 0 : curr_iov_written_ = 0;
1019 0 : ++curr_iov_index_;
1020 : }
1021 :
1022 : const size_t to_write = std::min(
1023 0 : len, output_iov_[curr_iov_index_].iov_len - curr_iov_written_);
1024 0 : memcpy(GetIOVecPointer(curr_iov_index_, curr_iov_written_),
1025 : ip,
1026 0 : to_write);
1027 0 : curr_iov_written_ += to_write;
1028 0 : total_written_ += to_write;
1029 0 : ip += to_write;
1030 0 : len -= to_write;
1031 : }
1032 :
1033 0 : return true;
1034 : }
1035 :
1036 0 : inline bool TryFastAppend(const char* ip, size_t available, size_t len) {
1037 0 : const size_t space_left = output_limit_ - total_written_;
1038 0 : if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16 &&
1039 0 : output_iov_[curr_iov_index_].iov_len - curr_iov_written_ >= 16) {
1040 : // Fast path, used for the majority (about 95%) of invocations.
1041 0 : char* ptr = GetIOVecPointer(curr_iov_index_, curr_iov_written_);
1042 0 : UnalignedCopy64(ip, ptr);
1043 0 : UnalignedCopy64(ip + 8, ptr + 8);
1044 0 : curr_iov_written_ += len;
1045 0 : total_written_ += len;
1046 0 : return true;
1047 : }
1048 :
1049 0 : return false;
1050 : }
1051 :
1052 0 : inline bool AppendFromSelf(size_t offset, size_t len) {
1053 0 : if (offset > total_written_ || offset == 0) {
1054 0 : return false;
1055 : }
1056 0 : const size_t space_left = output_limit_ - total_written_;
1057 0 : if (len > space_left) {
1058 0 : return false;
1059 : }
1060 :
1061 : // Locate the iovec from which we need to start the copy.
1062 0 : size_t from_iov_index = curr_iov_index_;
1063 0 : size_t from_iov_offset = curr_iov_written_;
1064 0 : while (offset > 0) {
1065 0 : if (from_iov_offset >= offset) {
1066 0 : from_iov_offset -= offset;
1067 0 : break;
1068 : }
1069 :
1070 0 : offset -= from_iov_offset;
1071 0 : --from_iov_index;
1072 0 : from_iov_offset = output_iov_[from_iov_index].iov_len;
1073 : }
1074 :
1075 : // Copy <len> bytes starting from the iovec pointed to by from_iov_index to
1076 : // the current iovec.
1077 0 : while (len > 0) {
1078 0 : assert(from_iov_index <= curr_iov_index_);
1079 0 : if (from_iov_index != curr_iov_index_) {
1080 : const size_t to_copy = std::min(
1081 0 : output_iov_[from_iov_index].iov_len - from_iov_offset,
1082 0 : len);
1083 0 : Append(GetIOVecPointer(from_iov_index, from_iov_offset), to_copy);
1084 0 : len -= to_copy;
1085 0 : if (len > 0) {
1086 0 : ++from_iov_index;
1087 0 : from_iov_offset = 0;
1088 : }
1089 : } else {
1090 0 : assert(curr_iov_written_ <= output_iov_[curr_iov_index_].iov_len);
1091 0 : size_t to_copy = std::min(output_iov_[curr_iov_index_].iov_len -
1092 : curr_iov_written_,
1093 0 : len);
1094 0 : if (to_copy == 0) {
1095 : // This iovec is full. Go to the next one.
1096 0 : if (curr_iov_index_ + 1 >= output_iov_count_) {
1097 0 : return false;
1098 : }
1099 0 : ++curr_iov_index_;
1100 0 : curr_iov_written_ = 0;
1101 0 : continue;
1102 : }
1103 0 : if (to_copy > len) {
1104 0 : to_copy = len;
1105 : }
1106 0 : IncrementalCopy(GetIOVecPointer(from_iov_index, from_iov_offset),
1107 : GetIOVecPointer(curr_iov_index_, curr_iov_written_),
1108 0 : to_copy);
1109 0 : curr_iov_written_ += to_copy;
1110 0 : from_iov_offset += to_copy;
1111 0 : total_written_ += to_copy;
1112 0 : len -= to_copy;
1113 : }
1114 : }
1115 :
1116 0 : return true;
1117 : }
1118 :
1119 : };
1120 :
1121 0 : bool RawUncompressToIOVec(const char* compressed, size_t compressed_length,
1122 : const struct iovec* iov, size_t iov_cnt) {
1123 0 : ByteArraySource reader(compressed, compressed_length);
1124 0 : return RawUncompressToIOVec(&reader, iov, iov_cnt);
1125 : }
1126 :
1127 0 : bool RawUncompressToIOVec(Source* compressed, const struct iovec* iov,
1128 : size_t iov_cnt) {
1129 0 : SnappyIOVecWriter output(iov, iov_cnt);
1130 0 : return InternalUncompress(compressed, &output);
1131 : }
1132 :
1133 : // -----------------------------------------------------------------------
1134 : // Flat array interfaces
1135 : // -----------------------------------------------------------------------
1136 :
1137 : // A type that writes to a flat array.
1138 : // Note that this is not a "ByteSink", but a type that matches the
1139 : // Writer template argument to SnappyDecompressor::DecompressAllTags().
1140 : class SnappyArrayWriter {
1141 : private:
1142 : char* base_;
1143 : char* op_;
1144 : char* op_limit_;
1145 :
1146 : public:
1147 76 : inline explicit SnappyArrayWriter(char* dst)
1148 : : base_(dst),
1149 : op_(dst),
1150 76 : op_limit_(0) {
1151 76 : }
1152 :
1153 76 : inline void SetExpectedLength(size_t len) {
1154 76 : op_limit_ = op_ + len;
1155 76 : }
1156 :
1157 76 : inline bool CheckLength() const {
1158 76 : return op_ == op_limit_;
1159 : }
1160 :
1161 527278 : inline bool Append(const char* ip, size_t len) {
1162 527278 : char* op = op_;
1163 527278 : const size_t space_left = op_limit_ - op;
1164 527278 : if (space_left < len) {
1165 0 : return false;
1166 : }
1167 527278 : memcpy(op, ip, len);
1168 527278 : op_ = op + len;
1169 527278 : return true;
1170 : }
1171 :
1172 26974108 : inline bool TryFastAppend(const char* ip, size_t available, size_t len) {
1173 26974108 : char* op = op_;
1174 26974108 : const size_t space_left = op_limit_ - op;
1175 26974108 : if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16) {
1176 : // Fast path, used for the majority (about 95%) of invocations.
1177 26446830 : UnalignedCopy64(ip, op);
1178 26446830 : UnalignedCopy64(ip + 8, op + 8);
1179 26446830 : op_ = op + len;
1180 26446830 : return true;
1181 : } else {
1182 527278 : return false;
1183 : }
1184 : }
1185 :
1186 88588052 : inline bool AppendFromSelf(size_t offset, size_t len) {
1187 88588052 : char* op = op_;
1188 88588052 : const size_t space_left = op_limit_ - op;
1189 :
1190 : // Check if we try to append from before the start of the buffer.
1191 : // Normally this would just be a check for "produced < offset",
1192 : // but "produced <= offset - 1u" is equivalent for every case
1193 : // except the one where offset==0, where the right side will wrap around
1194 : // to a very big number. This is convenient, as offset==0 is another
1195 : // invalid case that we also want to catch, so that we do not go
1196 : // into an infinite loop.
1197 88588052 : assert(op >= base_);
1198 88588052 : size_t produced = op - base_;
1199 88588052 : if (produced <= offset - 1u) {
1200 0 : return false;
1201 : }
1202 88588052 : if (len <= 16 && offset >= 8 && space_left >= 16) {
1203 : // Fast path, used for the majority (70-80%) of dynamic invocations.
1204 86801742 : UnalignedCopy64(op - offset, op);
1205 86801742 : UnalignedCopy64(op - offset + 8, op + 8);
1206 : } else {
1207 1786310 : if (space_left >= len + kMaxIncrementCopyOverflow) {
1208 1786294 : IncrementalCopyFastPath(op - offset, op, len);
1209 : } else {
1210 16 : if (space_left < len) {
1211 0 : return false;
1212 : }
1213 16 : IncrementalCopy(op - offset, op, len);
1214 : }
1215 : }
1216 :
1217 88588052 : op_ = op + len;
1218 88588052 : return true;
1219 : }
1220 : };
1221 :
1222 76 : bool RawUncompress(const char* compressed, size_t n, char* uncompressed) {
1223 76 : ByteArraySource reader(compressed, n);
1224 76 : return RawUncompress(&reader, uncompressed);
1225 : }
1226 :
1227 76 : bool RawUncompress(Source* compressed, char* uncompressed) {
1228 76 : SnappyArrayWriter output(uncompressed);
1229 76 : return InternalUncompress(compressed, &output);
1230 : }
1231 :
1232 0 : bool Uncompress(const char* compressed, size_t n, string* uncompressed) {
1233 : size_t ulength;
1234 0 : if (!GetUncompressedLength(compressed, n, &ulength)) {
1235 0 : return false;
1236 : }
1237 : // On 32-bit builds: max_size() < kuint32max. Check for that instead
1238 : // of crashing (e.g., consider externally specified compressed data).
1239 0 : if (ulength > uncompressed->max_size()) {
1240 0 : return false;
1241 : }
1242 0 : STLStringResizeUninitialized(uncompressed, ulength);
1243 0 : return RawUncompress(compressed, n, string_as_array(uncompressed));
1244 : }
1245 :
1246 :
1247 : // A Writer that drops everything on the floor and just does validation
1248 : class SnappyDecompressionValidator {
1249 : private:
1250 : size_t expected_;
1251 : size_t produced_;
1252 :
1253 : public:
1254 0 : inline SnappyDecompressionValidator() : expected_(0), produced_(0) { }
1255 0 : inline void SetExpectedLength(size_t len) {
1256 0 : expected_ = len;
1257 0 : }
1258 0 : inline bool CheckLength() const {
1259 0 : return expected_ == produced_;
1260 : }
1261 0 : inline bool Append(const char*, size_t len) {
1262 0 : produced_ += len;
1263 0 : return produced_ <= expected_;
1264 : }
1265 0 : inline bool TryFastAppend(const char*, size_t, size_t) {
1266 0 : return false;
1267 : }
1268 0 : inline bool AppendFromSelf(size_t offset, size_t len) {
1269 : // See SnappyArrayWriter::AppendFromSelf for an explanation of
1270 : // the "offset - 1u" trick.
1271 0 : if (produced_ <= offset - 1u) return false;
1272 0 : produced_ += len;
1273 0 : return produced_ <= expected_;
1274 : }
1275 : };
1276 :
1277 0 : bool IsValidCompressedBuffer(const char* compressed, size_t n) {
1278 0 : ByteArraySource reader(compressed, n);
1279 0 : SnappyDecompressionValidator writer;
1280 0 : return InternalUncompress(&reader, &writer);
1281 : }
1282 :
1283 88 : void RawCompress(const char* input,
1284 : size_t input_length,
1285 : char* compressed,
1286 : size_t* compressed_length) {
1287 88 : ByteArraySource reader(input, input_length);
1288 176 : UncheckedByteArraySink writer(compressed);
1289 88 : Compress(&reader, &writer);
1290 :
1291 : // Compute how many bytes were added
1292 176 : *compressed_length = (writer.CurrentDestination() - compressed);
1293 88 : }
1294 :
1295 0 : size_t Compress(const char* input, size_t input_length, string* compressed) {
1296 : // Pre-grow the buffer to the max length of the compressed output
1297 0 : compressed->resize(MaxCompressedLength(input_length));
1298 :
1299 : size_t compressed_length;
1300 : RawCompress(input, input_length, string_as_array(compressed),
1301 0 : &compressed_length);
1302 0 : compressed->resize(compressed_length);
1303 0 : return compressed_length;
1304 : }
1305 :
1306 :
1307 : } // end namespace snappy
|