LCOV - code coverage report
Current view: top level - pression/compressor/zstd/lib/common - fse.h (source / functions) Hit Total Coverage
Test: Pression Lines: 58 58 100.0 %
Date: 2016-12-06 05:44:58 Functions: 9 9 100.0 %

          Line data    Source code
       1             : /* ******************************************************************
       2             :    FSE : Finite State Entropy codec
       3             :    Public Prototypes declaration
       4             :    Copyright (C) 2013-2016, Yann Collet.
       5             : 
       6             :    BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
       7             : 
       8             :    Redistribution and use in source and binary forms, with or without
       9             :    modification, are permitted provided that the following conditions are
      10             :    met:
      11             : 
      12             :        * Redistributions of source code must retain the above copyright
      13             :    notice, this list of conditions and the following disclaimer.
      14             :        * Redistributions in binary form must reproduce the above
      15             :    copyright notice, this list of conditions and the following disclaimer
      16             :    in the documentation and/or other materials provided with the
      17             :    distribution.
      18             : 
      19             :    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
      20             :    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
      21             :    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
      22             :    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
      23             :    OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
      24             :    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
      25             :    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
      26             :    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
      27             :    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
      28             :    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
      29             :    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
      30             : 
      31             :    You can contact the author at :
      32             :    - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
      33             : ****************************************************************** */
      34             : #ifndef FSE_H
      35             : #define FSE_H
      36             : 
      37             : #if defined (__cplusplus)
      38             : extern "C" {
      39             : #endif
      40             : 
      41             : 
      42             : /*-*****************************************
      43             : *  Dependencies
      44             : ******************************************/
      45             : #include <stddef.h>    /* size_t, ptrdiff_t */
      46             : 
      47             : 
      48             : /*-****************************************
      49             : *  FSE simple functions
      50             : ******************************************/
      51             : /*! FSE_compress() :
      52             :     Compress content of buffer 'src', of size 'srcSize', into destination buffer 'dst'.
      53             :     'dst' buffer must be already allocated. Compression runs faster is dstCapacity >= FSE_compressBound(srcSize).
      54             :     @return : size of compressed data (<= dstCapacity).
      55             :     Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
      56             :                      if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression instead.
      57             :                      if FSE_isError(return), compression failed (more details using FSE_getErrorName())
      58             : */
      59             : size_t FSE_compress(void* dst, size_t dstCapacity,
      60             :               const void* src, size_t srcSize);
      61             : 
      62             : /*! FSE_decompress():
      63             :     Decompress FSE data from buffer 'cSrc', of size 'cSrcSize',
      64             :     into already allocated destination buffer 'dst', of size 'dstCapacity'.
      65             :     @return : size of regenerated data (<= maxDstSize),
      66             :               or an error code, which can be tested using FSE_isError() .
      67             : 
      68             :     ** Important ** : FSE_decompress() does not decompress non-compressible nor RLE data !!!
      69             :     Why ? : making this distinction requires a header.
      70             :     Header management is intentionally delegated to the user layer, which can better manage special cases.
      71             : */
      72             : size_t FSE_decompress(void* dst,  size_t dstCapacity,
      73             :                 const void* cSrc, size_t cSrcSize);
      74             : 
      75             : 
      76             : /*-*****************************************
      77             : *  Tool functions
      78             : ******************************************/
      79             : size_t FSE_compressBound(size_t size);       /* maximum compressed size */
      80             : 
      81             : /* Error Management */
      82             : unsigned    FSE_isError(size_t code);        /* tells if a return value is an error code */
      83             : const char* FSE_getErrorName(size_t code);   /* provides error code string (useful for debugging) */
      84             : 
      85             : 
      86             : /*-*****************************************
      87             : *  FSE advanced functions
      88             : ******************************************/
      89             : /*! FSE_compress2() :
      90             :     Same as FSE_compress(), but allows the selection of 'maxSymbolValue' and 'tableLog'
      91             :     Both parameters can be defined as '0' to mean : use default value
      92             :     @return : size of compressed data
      93             :     Special values : if return == 0, srcData is not compressible => Nothing is stored within cSrc !!!
      94             :                      if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression.
      95             :                      if FSE_isError(return), it's an error code.
      96             : */
      97             : size_t FSE_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
      98             : 
      99             : 
     100             : /*-*****************************************
     101             : *  FSE detailed API
     102             : ******************************************/
     103             : /*!
     104             : FSE_compress() does the following:
     105             : 1. count symbol occurrence from source[] into table count[]
     106             : 2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
     107             : 3. save normalized counters to memory buffer using writeNCount()
     108             : 4. build encoding table 'CTable' from normalized counters
     109             : 5. encode the data stream using encoding table 'CTable'
     110             : 
     111             : FSE_decompress() does the following:
     112             : 1. read normalized counters with readNCount()
     113             : 2. build decoding table 'DTable' from normalized counters
     114             : 3. decode the data stream using decoding table 'DTable'
     115             : 
     116             : The following API allows targeting specific sub-functions for advanced tasks.
     117             : For example, it's possible to compress several blocks using the same 'CTable',
     118             : or to save and provide normalized distribution using external method.
     119             : */
     120             : 
     121             : /* *** COMPRESSION *** */
     122             : 
     123             : /*! FSE_count():
     124             :     Provides the precise count of each byte within a table 'count'.
     125             :     'count' is a table of unsigned int, of minimum size (*maxSymbolValuePtr+1).
     126             :     *maxSymbolValuePtr will be updated if detected smaller than initial value.
     127             :     @return : the count of the most frequent symbol (which is not identified).
     128             :               if return == srcSize, there is only one symbol.
     129             :               Can also return an error code, which can be tested with FSE_isError(). */
     130             : size_t FSE_count(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize);
     131             : 
     132             : /*! FSE_optimalTableLog():
     133             :     dynamically downsize 'tableLog' when conditions are met.
     134             :     It saves CPU time, by using smaller tables, while preserving or even improving compression ratio.
     135             :     @return : recommended tableLog (necessarily <= 'maxTableLog') */
     136             : unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
     137             : 
     138             : /*! FSE_normalizeCount():
     139             :     normalize counts so that sum(count[]) == Power_of_2 (2^tableLog)
     140             :     'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1).
     141             :     @return : tableLog,
     142             :               or an errorCode, which can be tested using FSE_isError() */
     143             : size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog, const unsigned* count, size_t srcSize, unsigned maxSymbolValue);
     144             : 
     145             : /*! FSE_NCountWriteBound():
     146             :     Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'.
     147             :     Typically useful for allocation purpose. */
     148             : size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog);
     149             : 
     150             : /*! FSE_writeNCount():
     151             :     Compactly save 'normalizedCounter' into 'buffer'.
     152             :     @return : size of the compressed table,
     153             :               or an errorCode, which can be tested using FSE_isError(). */
     154             : size_t FSE_writeNCount (void* buffer, size_t bufferSize, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
     155             : 
     156             : 
     157             : /*! Constructor and Destructor of FSE_CTable.
     158             :     Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */
     159             : typedef unsigned FSE_CTable;   /* don't allocate that. It's only meant to be more restrictive than void* */
     160             : FSE_CTable* FSE_createCTable (unsigned tableLog, unsigned maxSymbolValue);
     161             : void        FSE_freeCTable (FSE_CTable* ct);
     162             : 
     163             : /*! FSE_buildCTable():
     164             :     Builds `ct`, which must be already allocated, using FSE_createCTable().
     165             :     @return : 0, or an errorCode, which can be tested using FSE_isError() */
     166             : size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
     167             : 
     168             : /*! FSE_compress_usingCTable():
     169             :     Compress `src` using `ct` into `dst` which must be already allocated.
     170             :     @return : size of compressed data (<= `dstCapacity`),
     171             :               or 0 if compressed data could not fit into `dst`,
     172             :               or an errorCode, which can be tested using FSE_isError() */
     173             : size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct);
     174             : 
     175             : /*!
     176             : Tutorial :
     177             : ----------
     178             : The first step is to count all symbols. FSE_count() does this job very fast.
     179             : Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells.
     180             : 'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0]
     181             : maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value)
     182             : FSE_count() will return the number of occurrence of the most frequent symbol.
     183             : This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility.
     184             : If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
     185             : 
     186             : The next step is to normalize the frequencies.
     187             : FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'.
     188             : It also guarantees a minimum of 1 to any Symbol with frequency >= 1.
     189             : You can use 'tableLog'==0 to mean "use default tableLog value".
     190             : If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(),
     191             : which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default").
     192             : 
     193             : The result of FSE_normalizeCount() will be saved into a table,
     194             : called 'normalizedCounter', which is a table of signed short.
     195             : 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells.
     196             : The return value is tableLog if everything proceeded as expected.
     197             : It is 0 if there is a single symbol within distribution.
     198             : If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()).
     199             : 
     200             : 'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount().
     201             : 'buffer' must be already allocated.
     202             : For guaranteed success, buffer size must be at least FSE_headerBound().
     203             : The result of the function is the number of bytes written into 'buffer'.
     204             : If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small).
     205             : 
     206             : 'normalizedCounter' can then be used to create the compression table 'CTable'.
     207             : The space required by 'CTable' must be already allocated, using FSE_createCTable().
     208             : You can then use FSE_buildCTable() to fill 'CTable'.
     209             : If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()).
     210             : 
     211             : 'CTable' can then be used to compress 'src', with FSE_compress_usingCTable().
     212             : Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize'
     213             : The function returns the size of compressed data (without header), necessarily <= `dstCapacity`.
     214             : If it returns '0', compressed data could not fit into 'dst'.
     215             : If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
     216             : */
     217             : 
     218             : 
     219             : /* *** DECOMPRESSION *** */
     220             : 
     221             : /*! FSE_readNCount():
     222             :     Read compactly saved 'normalizedCounter' from 'rBuffer'.
     223             :     @return : size read from 'rBuffer',
     224             :               or an errorCode, which can be tested using FSE_isError().
     225             :               maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
     226             : size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, const void* rBuffer, size_t rBuffSize);
     227             : 
     228             : /*! Constructor and Destructor of FSE_DTable.
     229             :     Note that its size depends on 'tableLog' */
     230             : typedef unsigned FSE_DTable;   /* don't allocate that. It's just a way to be more restrictive than void* */
     231             : FSE_DTable* FSE_createDTable(unsigned tableLog);
     232             : void        FSE_freeDTable(FSE_DTable* dt);
     233             : 
     234             : /*! FSE_buildDTable():
     235             :     Builds 'dt', which must be already allocated, using FSE_createDTable().
     236             :     return : 0, or an errorCode, which can be tested using FSE_isError() */
     237             : size_t FSE_buildDTable (FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
     238             : 
     239             : /*! FSE_decompress_usingDTable():
     240             :     Decompress compressed source `cSrc` of size `cSrcSize` using `dt`
     241             :     into `dst` which must be already allocated.
     242             :     @return : size of regenerated data (necessarily <= `dstCapacity`),
     243             :               or an errorCode, which can be tested using FSE_isError() */
     244             : size_t FSE_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt);
     245             : 
     246             : /*!
     247             : Tutorial :
     248             : ----------
     249             : (Note : these functions only decompress FSE-compressed blocks.
     250             :  If block is uncompressed, use memcpy() instead
     251             :  If block is a single repeated byte, use memset() instead )
     252             : 
     253             : The first step is to obtain the normalized frequencies of symbols.
     254             : This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
     255             : 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
     256             : In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
     257             : or size the table to handle worst case situations (typically 256).
     258             : FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
     259             : The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
     260             : Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
     261             : If there is an error, the function will return an error code, which can be tested using FSE_isError().
     262             : 
     263             : The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
     264             : This is performed by the function FSE_buildDTable().
     265             : The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
     266             : If there is an error, the function will return an error code, which can be tested using FSE_isError().
     267             : 
     268             : `FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable().
     269             : `cSrcSize` must be strictly correct, otherwise decompression will fail.
     270             : FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`).
     271             : If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
     272             : */
     273             : 
     274             : 
     275             : #ifdef FSE_STATIC_LINKING_ONLY
     276             : 
     277             : /* *** Dependency *** */
     278             : #include "bitstream.h"
     279             : 
     280             : 
     281             : /* *****************************************
     282             : *  Static allocation
     283             : *******************************************/
     284             : /* FSE buffer bounds */
     285             : #define FSE_NCOUNTBOUND 512
     286             : #define FSE_BLOCKBOUND(size) (size + (size>>7))
     287             : #define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size))   /* Macro version, useful for static allocation */
     288             : 
     289             : /* It is possible to statically allocate FSE CTable/DTable as a table of unsigned using below macros */
     290             : #define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue)   (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2))
     291             : #define FSE_DTABLE_SIZE_U32(maxTableLog)                   (1 + (1<<maxTableLog))
     292             : 
     293             : 
     294             : /* *****************************************
     295             : *  FSE advanced API
     296             : *******************************************/
     297             : size_t FSE_countFast(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize);
     298             : /**< same as FSE_count(), but blindly trusts that all byte values within src are <= *maxSymbolValuePtr  */
     299             : 
     300             : unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus);
     301             : /**< same as FSE_optimalTableLog(), which used `minus==2` */
     302             : 
     303             : size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits);
     304             : /**< build a fake FSE_CTable, designed to not compress an input, where each symbol uses nbBits */
     305             : 
     306             : size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue);
     307             : /**< build a fake FSE_CTable, designed to compress always the same symbolValue */
     308             : 
     309             : size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits);
     310             : /**< build a fake FSE_DTable, designed to read an uncompressed bitstream where each symbol uses nbBits */
     311             : 
     312             : size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue);
     313             : /**< build a fake FSE_DTable, designed to always generate the same symbolValue */
     314             : 
     315             : 
     316             : /* *****************************************
     317             : *  FSE symbol compression API
     318             : *******************************************/
     319             : /*!
     320             :    This API consists of small unitary functions, which highly benefit from being inlined.
     321             :    You will want to enable link-time-optimization to ensure these functions are properly inlined in your binary.
     322             :    Visual seems to do it automatically.
     323             :    For gcc or clang, you'll need to add -flto flag at compilation and linking stages.
     324             :    If none of these solutions is applicable, include "fse.c" directly.
     325             : */
     326             : typedef struct
     327             : {
     328             :     ptrdiff_t   value;
     329             :     const void* stateTable;
     330             :     const void* symbolTT;
     331             :     unsigned    stateLog;
     332             : } FSE_CState_t;
     333             : 
     334             : static void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct);
     335             : 
     336             : static void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol);
     337             : 
     338             : static void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* CStatePtr);
     339             : 
     340             : /**<
     341             : These functions are inner components of FSE_compress_usingCTable().
     342             : They allow the creation of custom streams, mixing multiple tables and bit sources.
     343             : 
     344             : A key property to keep in mind is that encoding and decoding are done **in reverse direction**.
     345             : So the first symbol you will encode is the last you will decode, like a LIFO stack.
     346             : 
     347             : You will need a few variables to track your CStream. They are :
     348             : 
     349             : FSE_CTable    ct;         // Provided by FSE_buildCTable()
     350             : BIT_CStream_t bitStream;  // bitStream tracking structure
     351             : FSE_CState_t  state;      // State tracking structure (can have several)
     352             : 
     353             : 
     354             : The first thing to do is to init bitStream and state.
     355             :     size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize);
     356             :     FSE_initCState(&state, ct);
     357             : 
     358             : Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError();
     359             : You can then encode your input data, byte after byte.
     360             : FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time.
     361             : Remember decoding will be done in reverse direction.
     362             :     FSE_encodeByte(&bitStream, &state, symbol);
     363             : 
     364             : At any time, you can also add any bit sequence.
     365             : Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders
     366             :     BIT_addBits(&bitStream, bitField, nbBits);
     367             : 
     368             : The above methods don't commit data to memory, they just store it into local register, for speed.
     369             : Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
     370             : Writing data to memory is a manual operation, performed by the flushBits function.
     371             :     BIT_flushBits(&bitStream);
     372             : 
     373             : Your last FSE encoding operation shall be to flush your last state value(s).
     374             :     FSE_flushState(&bitStream, &state);
     375             : 
     376             : Finally, you must close the bitStream.
     377             : The function returns the size of CStream in bytes.
     378             : If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible)
     379             : If there is an error, it returns an errorCode (which can be tested using FSE_isError()).
     380             :     size_t size = BIT_closeCStream(&bitStream);
     381             : */
     382             : 
     383             : 
     384             : /* *****************************************
     385             : *  FSE symbol decompression API
     386             : *******************************************/
     387             : typedef struct
     388             : {
     389             :     size_t      state;
     390             :     const void* table;   /* precise table may vary, depending on U16 */
     391             : } FSE_DState_t;
     392             : 
     393             : 
     394             : static void     FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
     395             : 
     396             : static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
     397             : 
     398             : static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
     399             : 
     400             : /**<
     401             : Let's now decompose FSE_decompress_usingDTable() into its unitary components.
     402             : You will decode FSE-encoded symbols from the bitStream,
     403             : and also any other bitFields you put in, **in reverse order**.
     404             : 
     405             : You will need a few variables to track your bitStream. They are :
     406             : 
     407             : BIT_DStream_t DStream;    // Stream context
     408             : FSE_DState_t  DState;     // State context. Multiple ones are possible
     409             : FSE_DTable*   DTablePtr;  // Decoding table, provided by FSE_buildDTable()
     410             : 
     411             : The first thing to do is to init the bitStream.
     412             :     errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
     413             : 
     414             : You should then retrieve your initial state(s)
     415             : (in reverse flushing order if you have several ones) :
     416             :     errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
     417             : 
     418             : You can then decode your data, symbol after symbol.
     419             : For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
     420             : Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
     421             :     unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
     422             : 
     423             : You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
     424             : Note : maximum allowed nbBits is 25, for 32-bits compatibility
     425             :     size_t bitField = BIT_readBits(&DStream, nbBits);
     426             : 
     427             : All above operations only read from local register (which size depends on size_t).
     428             : Refueling the register from memory is manually performed by the reload method.
     429             :     endSignal = FSE_reloadDStream(&DStream);
     430             : 
     431             : BIT_reloadDStream() result tells if there is still some more data to read from DStream.
     432             : BIT_DStream_unfinished : there is still some data left into the DStream.
     433             : BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
     434             : BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
     435             : BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
     436             : 
     437             : When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
     438             : to properly detect the exact end of stream.
     439             : After each decoded symbol, check if DStream is fully consumed using this simple test :
     440             :     BIT_reloadDStream(&DStream) >= BIT_DStream_completed
     441             : 
     442             : When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
     443             : Checking if DStream has reached its end is performed by :
     444             :     BIT_endOfDStream(&DStream);
     445             : Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
     446             :     FSE_endOfDState(&DState);
     447             : */
     448             : 
     449             : 
     450             : /* *****************************************
     451             : *  FSE unsafe API
     452             : *******************************************/
     453             : static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
     454             : /* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
     455             : 
     456             : 
     457             : /* *****************************************
     458             : *  Implementation of inlined functions
     459             : *******************************************/
     460             : typedef struct {
     461             :     int deltaFindState;
     462             :     U32 deltaNbBits;
     463             : } FSE_symbolCompressionTransform; /* total 8 bytes */
     464             : 
     465        8296 : MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct)
     466             : {
     467        8296 :     const void* ptr = ct;
     468        8296 :     const U16* u16ptr = (const U16*) ptr;
     469        8296 :     const U32 tableLog = MEM_read16(ptr);
     470        8296 :     statePtr->value = (ptrdiff_t)1<<tableLog;
     471        8296 :     statePtr->stateTable = u16ptr+2;
     472        8296 :     statePtr->symbolTT = ((const U32*)ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1));
     473        8296 :     statePtr->stateLog = tableLog;
     474        8296 : }
     475             : 
     476             : 
     477             : /*! FSE_initCState2() :
     478             : *   Same as FSE_initCState(), but the first symbol to include (which will be the last to be read)
     479             : *   uses the smallest state value possible, saving the cost of this symbol */
     480        8296 : MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol)
     481             : {
     482        8296 :     FSE_initCState(statePtr, ct);
     483        8296 :     {   const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
     484        8296 :         const U16* stateTable = (const U16*)(statePtr->stateTable);
     485        8296 :         U32 nbBitsOut  = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16);
     486        8296 :         statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits;
     487        8296 :         statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
     488             :     }
     489        8296 : }
     490             : 
     491    33853154 : MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, U32 symbol)
     492             : {
     493    33853154 :     const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
     494    33853154 :     const U16* const stateTable = (const U16*)(statePtr->stateTable);
     495    33853154 :     U32 nbBitsOut  = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16);
     496    33853154 :     BIT_addBits(bitC, statePtr->value, nbBitsOut);
     497    33853154 :     statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
     498    33853154 : }
     499             : 
     500        8296 : MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr)
     501             : {
     502        8296 :     BIT_addBits(bitC, statePtr->value, statePtr->stateLog);
     503        8296 :     BIT_flushBits(bitC);
     504        8296 : }
     505             : 
     506             : /* ======    Decompression    ====== */
     507             : 
     508             : typedef struct {
     509             :     U16 tableLog;
     510             :     U16 fastMode;
     511             : } FSE_DTableHeader;   /* sizeof U32 */
     512             : 
     513             : typedef struct
     514             : {
     515             :     unsigned short newState;
     516             :     unsigned char  symbol;
     517             :     unsigned char  nbBits;
     518             : } FSE_decode_t;   /* size == U32 */
     519             : 
     520        8232 : MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
     521             : {
     522        8232 :     const void* ptr = dt;
     523        8232 :     const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr;
     524        8232 :     DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
     525        8232 :     BIT_reloadDStream(bitD);
     526        8232 :     DStatePtr->table = dt + 1;
     527        8232 : }
     528             : 
     529    33347046 : MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr)
     530             : {
     531    33347046 :     FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
     532    33347046 :     return DInfo.symbol;
     533             : }
     534             : 
     535    33347046 : MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
     536             : {
     537    33347046 :     FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
     538    33347046 :     U32 const nbBits = DInfo.nbBits;
     539    33347046 :     size_t const lowBits = BIT_readBits(bitD, nbBits);
     540    33347046 :     DStatePtr->state = DInfo.newState + lowBits;
     541    33347046 : }
     542             : 
     543      274724 : MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
     544             : {
     545      274724 :     FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
     546      274724 :     U32 const nbBits = DInfo.nbBits;
     547      274724 :     BYTE const symbol = DInfo.symbol;
     548      274724 :     size_t const lowBits = BIT_readBits(bitD, nbBits);
     549             : 
     550      274724 :     DStatePtr->state = DInfo.newState + lowBits;
     551      274724 :     return symbol;
     552             : }
     553             : 
     554             : /*! FSE_decodeSymbolFast() :
     555             :     unsafe, only works if no symbol has a probability > 50% */
     556      231524 : MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
     557             : {
     558      231524 :     FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
     559      231524 :     U32 const nbBits = DInfo.nbBits;
     560      231524 :     BYTE const symbol = DInfo.symbol;
     561      231524 :     size_t const lowBits = BIT_readBitsFast(bitD, nbBits);
     562             : 
     563      231524 :     DStatePtr->state = DInfo.newState + lowBits;
     564      231524 :     return symbol;
     565             : }
     566             : 
     567             : MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
     568             : {
     569             :     return DStatePtr->state == 0;
     570             : }
     571             : 
     572             : 
     573             : 
     574             : #ifndef FSE_COMMONDEFS_ONLY
     575             : 
     576             : /* **************************************************************
     577             : *  Tuning parameters
     578             : ****************************************************************/
     579             : /*!MEMORY_USAGE :
     580             : *  Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
     581             : *  Increasing memory usage improves compression ratio
     582             : *  Reduced memory usage can improve speed, due to cache effect
     583             : *  Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
     584             : #define FSE_MAX_MEMORY_USAGE 14
     585             : #define FSE_DEFAULT_MEMORY_USAGE 13
     586             : 
     587             : /*!FSE_MAX_SYMBOL_VALUE :
     588             : *  Maximum symbol value authorized.
     589             : *  Required for proper stack allocation */
     590             : #define FSE_MAX_SYMBOL_VALUE 255
     591             : 
     592             : 
     593             : /* **************************************************************
     594             : *  template functions type & suffix
     595             : ****************************************************************/
     596             : #define FSE_FUNCTION_TYPE BYTE
     597             : #define FSE_FUNCTION_EXTENSION
     598             : #define FSE_DECODE_TYPE FSE_decode_t
     599             : 
     600             : 
     601             : #endif   /* !FSE_COMMONDEFS_ONLY */
     602             : 
     603             : 
     604             : /* ***************************************************************
     605             : *  Constants
     606             : *****************************************************************/
     607             : #define FSE_MAX_TABLELOG  (FSE_MAX_MEMORY_USAGE-2)
     608             : #define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
     609             : #define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
     610             : #define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
     611             : #define FSE_MIN_TABLELOG 5
     612             : 
     613             : #define FSE_TABLELOG_ABSOLUTE_MAX 15
     614             : #if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
     615             : #  error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
     616             : #endif
     617             : 
     618             : #define FSE_TABLESTEP(tableSize) ((tableSize>>1) + (tableSize>>3) + 3)
     619             : 
     620             : 
     621             : #endif /* FSE_STATIC_LINKING_ONLY */
     622             : 
     623             : 
     624             : #if defined (__cplusplus)
     625             : }
     626             : #endif
     627             : 
     628             : #endif  /* FSE_H */

Generated by: LCOV version 1.11